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Abstract

A time delay reconstruction theorem inspired by that of Takens (1981 Springer
Lecture Notes in Mathematics vol 898, pp 366-81) is shown to hold for
finite-dimensional subsets of infinite-dimensional spaces, thereby generalizing
previous results which were valid only for subsets of finite-dimensional spaces.

Let A be a subset of a Hilbert space H with upper box-counting dimension
d(A) = d and ‘thickness exponent’ 7, which is invariant under a Lipschitz
map ®. Take an integer k > (2 + 7)d, and suppose that A,, the set of all
p-periodic points of ®, satisfies d(A,) < p/(2+7)forall p=1,..., k. Then
a prevalent set of Lipschitz observation functions # : H — R make the k-fold
observation map

w > [hG), h(® @), A(®*! )],
one-to-one between .4 and its image. The same result is true if A is a subset of
a Banach space provided that k > 2(1 + t)d and d(A,) < p/(2+21).

The result follows from a version of the Takens theorem for Holder
continuous maps adapted from Sauer er al (1991 J. Stat. Phys. 65 529-47),
and makes use of an embedding theorem for finite-dimensional sets due to Hunt
and Kaloshin (1999 Nonlinearity 12 1263-75).

Mathematics Subject Classification: 37130, 35B41, 35Q30, 76F20

1. Introduction

It is natural to ask whether the underlying dynamics of a physical system can be reconstructed
from an experimental time series. Setting this in a sufficiently abstract framework to allow
for a mathematical treatment, the question can be rephrased as follows. Suppose that the
experimental set-up can be modelled by a dynamical system that evolves in some state space E.
Given an observation function 2 : E — R, can a state in £ be distinguished by repeated
measurements of 4 along its future trajectory? (Such observability problems are common in
control theory, see Sontag (2002) for example.)
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This question was first answered positively by Aeyels (1981), but it is the following result
due to Takens, which gives more information and guarantees that an ‘accurate reconstruction’
is possible given a sufficient number of observations at equally spaced times, that is now better
known.

Theorem 1.1 (Takens 1981). Let M be a compact manifold of dimension d. For pairs (¢, h),
where ¢ : M — M is a smooth (at least C*) diffeomorphism and h : M — R a smooth
function, it is a generic property that the (2d + 1)-fold observation map Hi[@, h] : M — R*+!
defined by

x > (h(x), h(9(x)), ..., h(@* (x)))

is an immersion (i.e. Hy is one-to-one between M and its image with both H; and H,:l
differentiable).

The theorem can be applied to time series by taking ¢ to be the time 7" map of the underlying
(continuous time) dynamical system, i.e. ¢/ (xo) = x(jT), where x(-) is the trajectory starting
atxg. The reconstruction thatis then provided is ‘accurate’ in two ways. The first is topological:
the map Hj is one-to-one between M and its image in R?#*!, so that the time delay coordinates

[A(x(0)), h(x(T)), ..., h(x(2dT))]

can be guaranteed to distinguish between points on M (the result of Aeyels proves only this
one-to-one property).

The second is dynamical: the time 7 map on M is equivalent to a shift on the time series
in ‘delay coordinate space’,

h(x(0)), h&x(T)), ..., hx@dT)), hx(2d+DT)), h(x(2d+2)T)) ...,

Hi(x(T))

so we can hope to use these induced dynamics to obtain properties of the time 7 map on M.
Since Hy is a diffeomorphism (its inverse is differentiable) this reconstruction preserves the
dimension of any invariant set and the Lyapunov exponents of the flow.

Although the conclusions of this theorem are strong, so are its assumptions, which are hard
to verify in general and may in fact fail in a number of practical applications. The requirement
that the dynamics take place on a compact finite-dimensional manifold is very restrictive, and
a priori excludes the application of the result to the infinite-dimensional dynamical systems
arising from partial differential equations, and in particular fluid turbulence. This means that
theorem 1.1 provides no rigorous justification for the use of time-delay reconstruction for data
from many experimental situations.

It is therefore of some importance to try to generalize the Takens theorem to such infinite-
dimensional systems. This paper presents a generalization of the one-to-one part of the
theorem which can be applied to infinite-dimensional systems that have finite-dimensional
attractors. Note, however, that the resulting dynamical reconstruction may distort the Lyapunov
exponents and the dimension of invariant sets, since the observation mapping is not necessarily
a diffeomorphism. (For related problems in a different setting see Robinson (1999).)

The argument—which is surprisingly simple given that this problem has been open for
over twenty years'—relies heavily on the work of Sauer et al (1993), who proved a very
similar result for finite-dimensional attractors of finite-dimensional dynamical systems, and
the paper of Hunt and Kaloshin (1999) concerning the embedding of finite-dimensional sets
into finite-dimensional spaces.

! Two recent papers on more abstract embeddings (Hunt and Kaloshin 1999, Mansfield ez al 1999), highlight this as
an important problem.
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To be more mathematically precise, suppose that the underlying physical model generates
a dynamical system on an infinite-dimensional Hilbert space H, with the solution at time ¢
through the initial condition uq given by

u(t; ug) = S(t)ug.
The solution operator S(-) : H — H forms a semigroup satisfying the properties
S(0) =id, S)S(s) = St +5) and S(t)ug continuous in ¢ and uy.

Such a dynamical system is generated by many interesting partial differential equations,
including the two-dimensional Navier—Stokes equations (see Temam (1988) or Robinson
(2001) for details).

For many dissipative equations, it is possible to show that this dynamical system has a
global attractor A: a compact, positively invariant set which attracts (as t — 00) the orbits
of all bounded sets. The ‘asymptotic behaviour’ of the system can then be regarded as the
dynamics of S(¢) restricted to .A (cf Hale (1988), Robinson (2001), Temam (1988)). In many
cases (see Temam (1988) for numerous examples), these attractors can be shown to be finite-
dimensional subsets of the ambient infinite-dimensional phase space, and this is the key to the
treatment here.

As in the statement of theorem 1.1, it is convenient to work with iterated maps rather than
systems evolving continuously in time. Although the main result of this paper applies to any
Lipschitz map &, the application to time series makes the choice ® = S(T') for some T > 0
very natural. A simplified statement of theorem 5.1 is the following.

Theorem 1.2. Let A be a compact subset of a Hilbert space H with upper box-counting
dimension d(A) = d, which has thickness exponent zero, and is an invariant set for a Lipschitz
map ® : H — H. Choose anintegerk > 2d, and suppose further that the set A, of p-periodic
points of @ satisfies d(Ap) < p/2. Then a prevalent set of Lipschitz maps f : H — R make
the k-fold observation map Di[f, ®]: H — R* defined by

Dilf, @) = (f ), (@), ..., f(® w))), ey

one-to-one on A.

(The thickness exponent is defined in section 3; prevalence, a version of ‘almost every’
applicable in infinite-dimensional spaces, is defined in section 2; and the expression ‘¢ is
one-to-one on X’ will be used throughout this paper to mean that ¢ is one-to-one between X
and its image.)

Broadly speaking, the theorem says that the dynamics on a finite-dimensional attractor
can be reconstructed using a sufficient number of equally spaced observations, provided that
there are not ‘too many’ periodic points of ®. The key idea of the proof is to use an abstract
embedding theorem due to Hunt and Kaloshin to reproduce the dynamics on .4 within a finite-
dimensional space. Although the resulting dynamical system is not very smooth, a modified
version of the result of Sauer et al can then be used to obtain the time delay embedding for the
original system.

2. Prevalence

In line with the treatment in Sauer et al (1993) and in Hunt and Kaloshin (1999), the theorem
here is expressed in terms of ‘prevalence’. This concept, which generalizes the notion of
‘almost every’ from finite to infinite-dimensional spaces, was introduced by Hunt et al (1992);
see their paper for a detailed discussion.
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Definition 2.1. A Borel subset S of a normed linear space V is prevalent if there is a finite-
dimensional subspace E of V (‘the probe space’) such that for each v € V, v + e belongs to
S for (Lebesgue) almost every e € E.

Note that if V is finite-dimensional then this corresponds (via the Fubini theorem) to S
being a set whose complement has zero measure; and that if S is prevalent then S is dense in V.

3. Embedding finite-dimensional sets in R

That general finite-dimensional sets can be embedded into a Euclidean space of high enough
dimension is a result first due to Mané (1981). The argument here makes use of a powerful
extension of this result due to Hunt and Kaloshin (1999) which gives some information on
the smoothness of the parametrization of the set that is obtained from this embedding. The
statement of the result involves the upper box-counting dimension and the ‘thickness’ of the set.

The upper box-counting dimension of a set X, measured in a Banach space B, d(X; B),
is defined as follows. Let Ng(X, €) be the minimum number of balls of radius € (in the norm
of B) necessary to cover the set X. Then

log N (X,
d(X: B) = lim sup 22 N2 ©)
e—0 - IOgE

This expression essentially captures the exponent d from the relationship N (X, €) ~ e~¢.

For more on this definition of dimension, see Eden et al (1994), Falconer (1990) or
Robinson (2001).
If X is a subspace of a Banach space B, then the thickness exponent of X in B, t(X; B), is
a measure of how well X can be approximated by linear subspaces of B. Denote by €5 (X, n)
the minimum distance between X and any n-dimensional linear subspace of B. Then
—logn

7(X; B) = lim

— (2)
n—oo logep (X, n)

which says that if e3(X, n) ~ n~!/7 then 7 is the thickness exponent of X. (Although less
elegant, this form of the definition is perhaps more practical than Hunt and Kaloshin’s original,
the equivalence of the two definitions is shown in lemma 2.1 in Kukavica and Robinson (2004).)
Hunt and Kaloshin show that in general 7(X; B) < d(X; B).

Theorem 3.1 (Hunt and Kaloshin 1999, theorem 3.6). Let H be a Hilbert spaceand X C H
be a compact set with upper box-counting dimension d and thickness exponent T (measured
in H). Let N > 2d be an integer, and let a be a real number with

0 N —2d 3)

<0< —".
N(l+1/2)

Then for a prevalent set of bounded linear functions L : H — RY there exists a C > 0
such that

C|Lx — Ly|* > |x — y| forallx,y € X. @)
The same result is true if H is a Banach space, but the right-hand side of (3) must be replaced
by (N —2d)/N(1 + 7).

(The density of Holder continuous parametrizations of finite-dimensional sets was first shown
by Foias and Olson (1996). Hunt and Kaloshin provided the explicit bound on the Holder
exponent in (3) as well as improving ‘density’ to ‘prevalence’.)
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They also give an example that shows, in general, that the upper limit on @ of 2/(2 + 1)
is sharp, no matter how large the embedding dimension. Since this upper limit becomes one
when T = 0, it is interesting to have a condition guaranteeing that the thickness is zero (as in
theorem 1.2). One such condition is provided by the following result> due to Friz and Robinson
(1999).

Proposition 3.2. Let Q be a bounded subset of R™. Suppose that X is a subset of L*(Q2) that
is uniformly bounded in H*(Q2). Then t(X; L*(R)) < m/s. In particular, if X consists of
‘smooth functions’, i.e. is uniformly bounded in H*(2) foreverys € N, thent(X; L%2(Q)) =0.

4. A finite-dimensional delay embedding theorem for Holder maps

This section gives a statement of a finite-dimensional delay embedding theorem that allows for
maps g that are only Holder continuous. Note, however, that the condition on the map g—that
not only g but all its iterates have the same Holder exponent—is a strong one. Although this
is the case for any Lipschitz map g (when 6 = 1), it is only true for a subset of all 6-Holder
functions g. Note also that if & = 1 then the condition on k in the theorem reduces to the
familiar k > 2d.

Theorem 4.1 (version of theorem 2.7 from Sauer et al 1991, allowing for certain Holder
continuous maps). Let X be a compact subset of RY withd(X) =d, andg : X — X amap
such that g" is a 6-Holder function for anyr € N. Let k > 2d /0 (k € N) and assume that the
set X, of p-periodic points of g (i.e. x € X such that gP(x) = x) satisfies d(X,) < p/20 for
allp=1,... k.

Let hy, ..., h, be a basis for the polynomials in N variables of degree at most 2k, and
given any 0-Holder function hy : RY — R define

he =ho+ Y _ajh;.
j=1

Then the k-fold observation map Fy : X — RY defined by
Filha, g1(x) = (ha(x), ho(8(x)), ... ha (g ())T (%)

is one-to-one on X for almost every a € R™.
(The condition that iterates of g be Holder is, in fact, only required for g, ..., gk_l.)

Proof. The proof follows that in Sauer ef al, apart from minor adjustments in the proof of
lemma 4.4/4.5 where the functions Gy, ..., G; are only taken to be 8-Holder; the image of
any e-ball under G, is then contained in a ball of radius Ce?, and G ' (0) is empty for almost
every « provided that r > d/6. |

The result in Sauer et al’s paper also shows, under conditions on the linearization of g
about its periodic orbits, that the observation map Fj is an immersion on all compact subsets
of smooth submanifolds of 4. It is not clear how to generalize such a result to the case when
g is not differentiable, but even if this was possible it would have no implications for the main
result given in the next section, since F; will be ‘lifted’ to a map on .4 via a map which is only
Holder continuous (as in (4)).

2 There is a small gap in the proof given in this paper, since a function in H* (£2) is not necessarily in D(A%/?), where
A is the Laplacian on € with Dirichlet boundary conditions. This can be corrected by first extending each u € X to
a function in H*(€) that has compact support in Q' for some €’ D €2, and then considering the Laplacian on €.
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5. An infinite-dimensional delay embedding theorem

Theorems 3.1 and 4.1 are now combined to give a topological time delay embedding theorem
valid in infinite-dimensional spaces.

Theorem 5.1. Let A be a compact subset of a Hilbert space H with upper box-counting
dimension d(A) = d, and which has thickness exponent t. Choose an integer k > (2 + t)d,
and suppose further that A is an invariant set for a Lipschitzmap ® : H — H, such that the set
A, of p-periodic points of ® satisfies d(A,) < p/(2+7t)for p=1,..., k. Then a prevalent
set of Lipschitz maps f : H — R make the k-fold observation map D[ f, ®] : H — R¥
defined by

Dilf, @1w) = (f ), F(@W)), ..., fF(Pw))) (©6)

one-to-one on A.
The same result holds if H is replaced by a Banach space B, provided that k > 2(1 + t)d
and d(A,) < p/(2+21).

Proof. Given k > (2 + t)d, first choose N large enough that
NQ2+
ps Nero
N —2d
and then pick ¢ < (N — 2d)/[N(1 + t/2)] such thatk > 2d /.
Use theorem 3.1 to find a bounded linear function L : H — R that is one-to-one on A
and satisfies

c|Lx — Ly|* > |x — y| forall x, y € A.
The set X = LA C RY is an invariant set for the induced mapping g : X — X defined by
g&)=Ld(L'¢).
Since
g (&) = LO"(L7'¢),
all the iterates of g are o-Holder:
1g"(€) — g" ()| = |L®"(L™'&) — L&" (L")
< IL|@" (L") — @™ (L "n)|
SUBILNL™"E — L7y
< cIRIILINE — nl°,

where ||L]| is the operator norm of L : H — R" and Iy, is the Lipschitz constant of ®.
Observe that if x is a fixed point of ®/ then & = Lx is a fixed point of g/, and vice versa.
It follows that X ,, the set of all points of X that are p-periodic for g, is given simply by X, =
LA,. Since L is Lipschitz and the box-counting dimension does not increase under the action
of Lipschitz maps3 (see, e.g., Robinson (2001)), d(X,) = d(LA,) < d(£,) < p/Q2+1).
Similarly, d(X) < d(A).
Now given a Lipschitz map fy : H — R, define the «-Holder map &g : R¥Y — R by

ho(§) = fo(L7'E) forall £ € X.

3 Although the dimension cannot increase under the action of Lipschitz maps, it can decrease. It may therefore be
possible to improve the result of this theorem by carefully choosing L to ensure that d(L.A) is as small as possible.
Thanks to David Broomhead for pointing this out.
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With {h;}7_, as a basis for the polynomials in N variables of degree at most 2k, all
the conditions of theorem 4.1 are satisfied, and hence for almost every « € R™, the k-fold
observation map on RY given by Fy[hy, g] (see (5)) is one-to-one on X.

Since

Felhg, 81(§) = (ha(§), ha(g(§)), .., ha(g EN,

and points in A and X are in one-to-one correspondence via L (§ = Lx, x = L™!(£)), the
map Fj, is equivalent to the k-fold observation map on H given by

Dl fur, @1x) = (fu(X), fu(D (X)), ..., ful @ ))T,

where £ = Lx and

M M
fa = hy OL+ZOlj(hj ol) = f0+2ajfj,
j=1 j=1
where the { f; }yz | form a basis for the linear space of polynomials on L H of degree at most 2k.
It follows that a prevalent set of Lipschitz f make the map D[ f, ®] one-to-one on A.

If A is a subset of a Banach space B, given k > 2(1 + 7)d, choose N large enough that

2N(1
k> M d,
Nod
and then pick « < (N —2d)/N (1 + t) such that k > 2d /«. The argument is then identical to
the Hilbert space case. O

Note that the condition on the number of delay coordinates required increases with the
thickness of the set A. In the case when A has zero thickness (t = 0), this reduces to the
k > 2d familiar from the deterministic theory (cf theorem 1.2 in the introduction).

In the case that ® = S(T') (the time T map of some underlying continuous time flow), the
condition d(A,) < p/(2+1) precludes the existence of certain periodic orbits. Indeed, for an
integer p such that p/(2+1) < 1, there can be no periodic orbit of period pT, since this would
yield a one-dimensional set of p-periodic points for ®. It follows that the original dynamical
system can have no periodic orbits of periods T, 27, ..., p*T, where p* is the largest integer
strictly less than 2 + t (or 2 + 2t when X is a subset of a Banach space).

It is therefore useful to have a result that prohibits the existence of periodic orbits with
small periods. For the finite-dimensional case, Yorke (1969) has shown that any periodic
orbit of the ordinary differential equation X = F(x) must have period at least 27 /L, where
L is the Lipschitz constant of F. In the finite-dimensional case this enables the conditions of
theorem 5.1 to be satisfied by taking ® = S(7) for T small enough.

That arbitrarily small periodic orbits are prohibited in the Navier—Stokes equations, in not
only the two-dimensional but also the three-dimensional case, is shown by Kukavica (1994).
Making use of some of his ideas, it is possible to prove a generalization of Yorke’s result
that is valid for those infinite-dimensional systems that can be written as semilinear evolution
equations (Robinson and Vidal-Lépez, 2005).

Let H be a Hilbert space with norm | - | and inner product (-, -), and let A be an unbounded
positive linear operator with compact inverse that acts on H. This means, in particular, that A
has a set of orthonormal eigenfunctions {w;}7Z, with corresponding positive eigenvalues 4 ;,
Aw; = Ajw;, which form a basis for H. Denote by D(A%) the domain in H of the fractional
power A%, which in this setting has the simple characterization
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Following Henry (1981), consider the semilinear evolution equation

du_ A 7
T u+ fu, @)

where f(u) is globally Lipschitz from D(A%) into H for some 0 < o < 1/2. Then for each
o with 0 < o < 1/2 there exists a constant K, such that if

|fu) — f)| < LIA*(u — v)| for all u, v € D(A%),

any periodic orbit of (7) must have period at least K,L~"/=%_ For such examples it again
follows that the condition on the periodic orbits of ® required by theorem 5.1 can be satisfied
by choosing ® = S(T') for any T sufficiently small.

6. Conclusion

Theorem 5.1 generalizes the one-to-one portion of the Takens embedding theorem to the
infinite-dimensional case, thereby justifying the reconstruction of dynamics from experimental
time series in certain spatially extended systems.

A related result, originally proved in the periodic case by Friz and Robinson (2001), and
recently generalized by Kukavica and Robinson (2004), shows that a sufficiently large number
of point observations are sufficient to distinguish between elements of a finite-dimensional set
consisting of analytic functions defined on a domain 2 (this can be weakened slightly). If
k > 16d7(A) + 1 then almost every set x = (xy, ..., x) of k points in {2 makes the map

ut> (uxy),...,ulxy))

one-to-one on X.

What would be more desirable in spatially extended systems such as those modelled by
partial differential equations would be to construct a one-to-one time series by sampling at a
single spatial point. However, this simple form of result cannot be true in general: consider as
in Kukavica and Robinson (2004) the complex Ginzburg—Landau (CGLE),

uy — (L+iv) gy + (1 +ip)|ul’u —au = 0, 8)

with periodic boundary conditions on = [0, 1]. If @ > 472 then such a result is not possible.
Indeed, given any x( € R, the two explicit solutions

uj(x,t) = va—4x2expQui(—1)/ (x — xo) — 4w?ivt — apit + 47> pit),

for j = 1,2, which are both contained in the attractor A, coincide at x( for all 7, while
they are clearly distinct. Of course, this does not contradict theorem 5.1, since the set of
those observations consisting of point values form a finite-dimensional subset of the Lipschitz
observation functions from L? into R.

Nevertheless, for this particular example Kukavica and Robinson (2004) have shown that
repeated observations at rwo sufficiently close spatial points do serve to distinguish solutions.
Note, however, that it cannot be guaranteed that these time points are equally spaced.

Theorem 6.1. There exists a 5y > 0 such that the following holds: let x| and x, be two points
with |x1 — x3| < 8o, choose Ty > 0, and let k > 16d(A) + 1. Then for almost every set of k
timest = (t1,t, ..., t) wherety, ..., t; € [0, To] the mapping E;: A — R2 defined by

Et(uo) = (M()C], tl)v K] u(‘x17 tk)a M(X2, tl)a LR u(-x2» tk))a

where u(x, t) is the solution with u(x, 0) = uy(x), is one-to-one on A.
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It is shown in the same paper that repeated observations at a single point sufficiently
close to the boundary does give a one-to-one mapping for the CGLE with Dirichlet boundary
conditions; and that observations at four points that are sufficiently close will work for the
Kuramoto-Sivashinksy equation.

It is an outstanding problem to prove a version of the theorem based on measurements at
a small number of spatial points repeated at equal time intervals.
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