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ABSTRACT
The effectiveness of two well established stochastic approaches, i.e. the generalized polynomial chaos method and the multi-
element generalized polynomial chaos method, is investigated to simulate the onset of convection in bidimensional square enclo-
sures with horizontal isothermal walls. The Boussinesq’s approximation for the variation of physical properties is assumed. The
stability analysis is first carried out in a deterministic sense, to determine steady state solutions and the primary bifurcation which
identifies the transition from conduction to convection regime. Stochastic simulations are then conducted around discontinuities
and transitional regimes. Randomness is introduced into the system through the Rayleigh number which is assumed to be a
random variable following a uniform distribution. By a comparison with an accurate Monte-Carlo simulation it is shown that
the statistics for the velocity and the temperature fields can be efficiently captured by the multi-element generalized polynomial
chaos method.

1 Introduction

Heat transfer analysis relies heavily on obtaining accurate
physical properties of the medium, precise boundary conditions,
and well defined geometries. In many situations, experimen-
tal data for such quantities are available, but there exist cases
where obtaining them is a difficult task and appropriate models
and hypotheses have to be used. This lack of knowledge about
the system has been traditionally neglected in numerical inves-
tigations of heat transfer where physical parameters, boundary
conditions, geometry and initial conditions are usually set to
be deterministic. Further developments toward physically rel-
evant results raise the need to account for more realistic op-
erating conditions, eventually represented in terms of random
processes. The recent rapid advances in computational fluid dy-
namics open this possibility and allow the integration and the
propagation of randomness in numerical simulations of convec-
tive heat transfer.

Uncertainty can be implemented by using either a statistical
approach or a non-statistical approach. The statistical approach,
e.g. Monte Carlo techniques, essentially amount to performing
deterministic simulations for randomly selected conditions and
then conducting a statistical analysis on the resulting set of real-
izations in order to extract the relevant statistics of the process.
The Monte Carlo approach [1] is known to be robust and to be
able to deal with very complex situations. However, as it is well
known, it tax the computational resources heavily and therefore
it is often restricted to problems involving a small number of
uncertain parameters and/or degrees of freedom. For example,
the Monte Carlo-based evaluation of statistical moments of 3D
Navier-Stokes equations is notorious for its computational dif-
ficulties. Even supercomputer-based simulations are often too
slow to provide a sufficient and timely number of samples for
effective estimation. In addition, performing computer simula-
tions by Monte Carlo methods entails generating random num-
bers. This is often a delicate problem that requires a careful

selection of pseudo-random number generators.
On the other hand, the non-statistical approach is based upon

an analytical treatment of the uncertainty. In many cases, it has
advantages over the statistical approach in terms of computer
time and in ease of interpretation. Thus recent research effort
has been focusing on developing efficient non-statistical meth-
ods for uncertainty quantification. Several non-statistical meth-
ods have been developed with different treatment of stochastic
fields. The perturbation method is based on the expansion of
random quantities around their mean values, and is widely used
in practice. The solution is often expressed in terms of their first
and second moment, resulting in the so-called “second moment
analysis” [2]. Another approach is based on the manipulation
of the stochastic operator. Methods along this line include the
weighted integral method [3] and Neumann expansion method
[4]. Another approach is based on the Fokker-Plank equation
[5].

A non-statistical approach, called polynomial chaos (PC), is
based on the homogeneous chaos theory of Wiener [6] and it in-
volves a spectral expansion of random fields based on Hermite
orthogonal polynomials in terms of Gaussian random variables.
By considering all the physical observables (velocity, tempera-
ture, etc.) as second order random processes, i.e. processes with
finite variance, the chaos expansion decouples deterministic ef-
fects from randomness though a Fourier transform in random
space. This is at the basis of the so called spectral stochastic
finite element method [10], which has several advantages over
Monte Carlo approaches. In particular it generally results in ef-
ficient uncertainty propagation schemes (in many situations or-
ders of magnitude faster than Monte-Carlo methods) and yields
quantitative estimates of the sensitivity of the solution with re-
spect to uncertainties in model data. In addition, this quantita-
tive information is expressed in a format that permits it to be
readily used to probe the dependence of specific observables on
particular components of the input data, to design experiments
in order to better calibrate and test the validity of postulated
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Figure 1. Functional relation between input and output of a non-linear
system. The functional F[·] can be expanded in functional power series.

models. The Wiener-Hermite stochastic finite element method
was first applied by Ghanem and his collaborators to various
problems in mechanics; applications to thermal convection at
steady state were published in [11; 12].

A broader framework, called generalized polynomial chaos
(gPC), was proposed in [13; 14] in order to deal with more gen-
eral random inputs effectively. This method represents a gener-
alization of the Wiener-Hermite expansion since the orthogonal
set of random polynomials used to represent the stochastic so-
lution is no longer the Hermite set but it is chosen according to
the probability distribution of the random input. This leads to
the least possible dimensionality and thus minimum computa-
tional complexity of the stochastic problem. Results have been
obtained for different flows such as 2D incompressible flow past
an oscillating cylinder [15], pressure driven channel flow [12],
natural convection in square enclosures [12; 11], compress-
ible flows induced by a piston moving inside an adiabatic tube.
Although generalized polynomial chaos works effectively for
many problems, e.g., elliptic and parabolic partial differential
equations with stochastic coefficients, it has been recognized
that it cannot deal with some other differential equations, e.g.,
the Kraichnan-Orszag’s three-mode system for modeling turbu-
lence [16] or the Navier-Stokes equations for unsteady noisy
flows such as the flow past a stationary cylinder with random
inflow [17; 15].

In order to deal with such situations and increase the accu-
racy of the generalized polynomial chaos spectral representa-
tion (p-type) it was proposed in [18; 19] an h-type extension
called multi element generalized polynomial chaos (ME-gPC).
The key idea is to partition the domain of the random input
into finite elements and consider a local generalized polyno-
mial chaos basis in each element. Clearly as the number of
these elements goes to infinity the multi-element method ap-
proaches Monte Carlo. Preliminary results and applications to
forced stochastic thermal convection are obtained in [21] and
[20].

This paper is organized as follows. In section §2 we review
the representation theory of random processes in terms of poly-
nomial chaos expansions.

In section §3 we consider natural convective flows in 2D
square enclosures under the Boussinesq’s approximation. We
study the onset of convection (primary bifurcation) both in de-
terministic and stochastic sense

2 Representation of the statistical solution

If we consider the statistical solution of the convection prob-
lem as a certain non-linear functional of the random variables
that model the uncertainties in input on the system the question
is: how do we represent such a functional?. This problem was
first considered by Volterra [24] in a deterministic sense. The
basic idea can be understood with reference to figure 1. We
have a non-linear system that maps the input x(t) onto y(t). The
functional F can obviously be expanded in a functional power

series in the form

F [x(t)] =
∞

∑
n=0

Fn[x(t)] ,

Fn[x(t)] =
Z

...

Z

︸ ︷︷ ︸
n

kn (t−α1, .., t−αn)x(α1)...x(αn)dα1...dαn

where kn (t−α1, .., t−αn) are the Volterra’s kernels. Follow-
ing the ideas of Volterra, N. Wiener [6] developed a functional
power series expansion for nonlinear systems forced by random
inputs x(t), i.e. stochastic processes. Specifically the type of
random input considered by Wiener was Brownian motion. One
of the most important property of the Wiener expansion relies
in the fact that the polynomial functionals are mutual orthog-
onal with respect to the probability measure of the Brownian
motion, i.e. Gaussian probability. Therefore these polynomials
are just the Hermite polynomials and for this reason this type
of expansion is also known as Wiener-Hermite expansion The
theoretical justification that any functional of the Brownian mo-
tion, i.e. any output of a generic non-linear system forced by
Brownian motion, can be expanded in series of Wiener-Hermite
functionals was given by R.H. Cameron and W.T. Martin [7]
in 1947. Subsequently other Authors extended the pioneering
ideas of Wiener to other types of random inputs such as the
Poisson process [8] and more general independent increment
stochastic processes [9]. The basic result of all these works is
that given a certain non-linear system y(t) = F [x(t)] forced by
some stochastic process x(t) one can always expand the input-
output functional relation F [·] as

y(t) =
∞

∑
n=0

Fn[x(t)] (1)

Fn[x(t)] =
Z

..

Z

︸ ︷︷ ︸
n

Φn[x(ξ1), ..,x(ξn)]gn (t−ξ1, .., t−ξn)dξ1..dξn

where Φn[x(ξ1), ..,x(ξn)] are multivariate polynomial function-
als of the random process x(t). Moreover these polynomials are
mutual orthogonal with respect to the probability measure of
x(t). In the special case where x(t) is Brownian motion it can
be shown that

Φ0 = 1
Φ1[x(ξ1)] = x(ξ1)

Φ2[x(ξ1),x(ξ2)] = x(ξ1)x(ξ2)−δ(ξ1−ξ2)
· · ·





multivariate
Hermite
polynomials

This is the classical Wiener-Hermite chaos expansion.
In the finite dimensional case all the integrals become sum-

mations and we have the easier representation

y(t;ζ) =
M

∑
k=0

ŷk (t)Φk (ζ) , (2)

where Φk (ζ) are orthogonal polynomials of the random vari-
ables ζ. The orthogonality is with respect to the probability



probability density of
the random input

polynomial chaos {Φi} support

Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)

Beta Jacobi [a,b]

Uniform Legendre [a,b]

Table 1. Correspondence between the probability density of the ran-
dom input and the optimal chaos basis to represent the random output.

measure of x(t), denoted by w(ξ), i.e.

Z
Φk(x)Φ j(x)w(x)dx = δk j ‖Φk‖

∥∥Φ j
∥∥ . (3)

Note that the chaos expansion (2) in some sense decouples the
deterministic part of the random signal yk(t) form its random
part Φk (ζ) though the orthogonalization process.

Therefore we can construct a unique correspondence be-
tween probability distribution of the random input x(t) and the
polynomial chaos basis to represent the random output. This
correspondence is shown in table 1 for the most common prob-
ability distributions of the random inputs. This kind of corre-
spondence has been called generalized polynomial chaos by Xiu
and Karniadakis [13]. In the language of finite elements this ex-
pansion exhibits p-type convergence, i.e. converges in the mean
square (L2) sense when the polynomial order is increased.

In order to increase the accuracy of the polynomial chaos
spectral representation (p-type) it was recently proposed by
Wan and Karniadakis [18; 19] an h-type extension. The key
idea, shown in figure 2(a), is to partition the domain of the ran-
dom inputs into finite elements and to consider a local general-
ized polynomial chaos basis in each of them. These finite ele-
ments are called “random finite elements” because they belong
to a discretization of the support of the probability density. The
type of polynomial chaos in each random element is chosen ac-
cording to the local probability density function of the random
input, shown in figure 2(b), so that we have local orthogonality.
Practically the random element Bk is mapped onto the standard
element [−1,1] and the probability density function w(ζ), re-
stricted to Bk, is transformed according to

w(ηk) =
(bk−ak)

2
R bk

ak
w(x)dx

w(ζk (ηk)) , Bk = [ak,bk] . (4)

Thus the orthogonal chaos basis for the random element Bk is
generated using to the local weight w̃(η) which is the renormal-
ized probability density function relative to the element Bk. It is
worth to note that the multi element method converges towards
a monte carlo method when the number of random elements
goes to infinity.
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Figure 2. Basic ideas underlying the multi-element polynomial chaos
method. The random element Bk is mapped onto the standard element
[−1,1] and the local probability density function w(ζ), restricted to Bk,
is transformed accordingly (equation (4)). The orthogonal chaos basis in
random element Bk is generated using to the local weight w̃(η) which
is the renormalized probability density function relative to the element
Bk.

3 Stochastic formulation of the Boussinesq’s equations

We consider the dimensionless form of the Boussinesq’s ap-
proximation

∂u
∂t

+(u ·∇)u = RaPrT j−∇p+Pr∇2u , (5)

∂T
∂t

+u ·∇T = ∇2T , (6)

∇ ·u = 0 . (7)

where j is the upward unit vector; u and T are the dimensionless
velocity and temperature fields respectively.

As it is well known for natural convection problems it is a
common practice to re-scale the Reynolds number as function of
the Prandtl and/or the Rayleigh numbers. Physically this means
that the reference velocity of the system is defined in terms of
the buoyancy magnitude and/or the termophysical properties of
the fluid. The dimensionless equations (5)-(7) are obtained us-
ing the standard scaling Re = 1/Pr.

We want to study the stochastic solution corresponding to a
random Rayleigh number. To this end we consider

Ra = Rac (1+σξ) (8)

where Rac plays the role of “critical Rayleigh number” and ξ is
a normalized random variable.

We consider a finite dimensional representation of the veloc-
ity, the pressure and the temperature in the generalized polyno-
mial chaos basis Φi (ξ) which are polynomials of the random
Rayleigh number

u(x, t;ξ) =
M

∑
i=1

ûi (x, t)Φi (ξ) , (9)

p(x, t;ξ) =
M

∑
i=1

p̂i (x, t)Φi (ξ) , (10)

T (x, t;ξ) =
M

∑
i=1

T̂i (x, t)Φi (ξ) . (11)

We substitute the expansions (9)-(11) into (5)-(7) and we per-
form a Galerkin projection onto {Φi}i=1,..,M in order to ensure



that the error is orthogonal to functional space spanned by the
finite dimensional chaos basis {Φi}. By employing the orthog-
onality conditions (3) we obtain for each k = 0, ...,M

∂ûk

∂t
+

1
e0kk

M

∑
i, j=0

(ûi ·∇) û jei jk = RacPr

(
T̂k +σ

M

∑
j=0

e1 jk

e0kk
T̂j

)
j−

−∇ p̂k +Pr∇2ûk , (12)

∂T̂k

∂t
+

1
e0kk

M

∑
i, j=1

·∇T̂jei jk = ∇2T̂k , (13)

∇ · ûk = 0 . (14)

It should be noted that the averaging operation allows to
transform effectively the stochastic problem into a system of
coupled partial differential equations to be solved for the deter-
ministic unknown chaos modes ûi (x, t). Discretization in space
and time can be carried out by any conventional deterministic
technique, e.g., finite element methods, finite volume methods,
etc. At the heart of the polynomial chaos method is the con-
struction of the matrix

ei jk =
Z

Φi(ξ)Φ j(ξ)Φk(ξ)w(ξ)dξ . (15)

Once this is available we can easily compute other quantities
such the mean and the standard deviations of the flow field

〈u(x, t;ξ)〉 = û0 (x, t) , (16)

σu (x, t) =

(
M

∑
k=1

ûk (x, t)2 e0kk

) 1
2

. (17)

In general it can be proved that the total number of equations
M + 1 to be solved simultaneously is related to the number of
independent random inputs n and to the highest order P of the
polynomials {Φi} by

M +1 =
(n+P)!

n!P!
. (18)

For our problem we only have one random input, the Rayleigh
number so n = 1. Therefore if we represent the stochastic so-
lution using a polynomial chaos of order P = 6 we have 6
Boussinesq-like problems to be solved simultaneously, which
means 24 scalar coupled partial differential equations if we
are in bidimensional space. Although for many problems the
polynomial chaos method definitely beats the Monte-Carlo ap-
proach we can clearly see in (18) the limit of applicability of
this technique. Even supercomputers based simulations cannot
handle such a proliferation of the number of equations when the
stochastic dimension M +1 is high.

4 Onset of convection in 2D square enclosures with
horizontal isothermal walls

In this section we study the transition form conduction to
convection (onset of convection) in 2D square enclosures under
the Boussinesq’s approximation. This phenomenon takes place
when the buoyancy effects due to temperature gradients exceed
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Figure 3. (a) Schematic of the geometry and boundary conditions. (b)
Rayleigh-Bénard roll at Rayleigh number Ra = 2590.
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Figure 4. Dimensionless temperature fields corresponding to flows at
Ra = 2560 (pure conduction) and Ra = 2590 (weak convection).

the stabilizing viscous effects [25] or, equivalently, when the
Rayleigh Ra number exceeds a “critical” Rayleigh number Rac
which in general depends on the aspect ratio of the cavity and
the boundary conditions but not on the Prandtl number. For
the geometry and the boundary conditions shown in figure 3(a)
it is well known [22; 23] that Rac = 2585.03; also, as shown
in figure 5 the transition from conduction to convection do not
depend on the Prandtl number.

For Ra < Rac the fluid flow is absent and the heat transfer
between the horizontal isothermal walls takes place by pure
conduction (figure 4(a)). For Ra > Rac the buoyancy effect
dominates, fluid flow is initiated and the temperature field is
significantly transported by velocity (figure 4(b)) with devel-
opment of the classical Rayleigh-Bénard rolls shown in figure
3(b). The physics of the solutions corresponding to Ra < Rac
and Ra > Rac is completely different and at Ra = Rac there is a
branch point that divides these two ensembles.

In order to determine the properties of the flow field in prox-
imity of the the onset of convection we use different approaches:

1. integral transform method [26] and
2. spectral element method [27].

The integral transform method allow us to perform a systematic
bifurcation analysis using AUTO. The result of these compu-
tations are shown in figure 5 where a branch point located at
Rac = 2585.24 is identified. We note that there is a very good
agreement with other results available in the literature, see for
instance [22; 23].

5 Stochastic simulations

We would like to study if polynomial chaos simulations can
capture the statistics of an ensemble of solutions that include
the onset of convection. This is a very important issue since this
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kind of discontinuity is one of the simplest bifurcation arising
in fluid mechanics and any stochastic simulation can potentially
include such bifurcations in its domain.

We consider the upper branch of the pitchfork bifurcation
shown in figure 5 and figure 7 (stable branch) and we study
the ensemble of solutions as function of the random Rayleigh
number.

We assume that the probability density of Rayleigh number is
uniform with mean Rac = 2585 and standard deviation 5%Rac,
i.e.

Ra = Rac (1+σξ) , ξ∼U ([−1,1]) , σ = 5% . (19)

With such a standard deviation the Rayleigh number ranges
from 2455.75 to 2714.25, thus including the branch point (see
figure 7). We study the statistics of the random flow correspond-
ing to this distribution of Rayleigh numbers using three different
stochastic approaches:

1. Monte Carlo method (based on Cotta’s integral transforma-
tion method [26]) to generate a benchmark for the stochas-
tic solution. The possibility to perform a timely and accu-
rate Monte Carlo simulation arises from the fact that the
integral transform method is computationally fast because
it reduces the system of partial differential equations to a
boundary value problem for an ordinary differential equa-
tion.

2. Generalized polynomial chaos (gPC) [13; 14] based on
spectral element code [27].

3. Multi-element generalized polynomial chaos (ME-gPC)
[18] based on spectral element code [27].

stable branch
(convection)

Ra=2456
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(conduction)
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branch point
Ra

c
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Figure 7. Sketch of the stochastic simulation domain.
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Figure 8. Monte-Carlo benchmark stochastic solution. Ensemble mean
(left) and ensemble standard deviation (right) for velocity and tempera-
ture fields. The ensemble of solutions is composed of 50000 samples.

The generalized polynomial chaos basis which is orthogonal
with respect the uniform measure, is the Legendre set (see table
1). In figure 8 we show the Monte Carlo ensemble mean and en-
semble standard deviation for velocity and temperature fields at
steady state. In figure 9 we compare the mean and the standard
deviation obtained by different stochastic approaches along the
crossline and y = 0.5L respectively.

6 Conclusions

As shown in figure 9 the transition from conduction to con-
vection, which is one of the simplest bifurcation arising in fluid
mechanics, can be efficiently captured in a stochastic sense by
the ME-gPC method. This is an important result since any
stochastic simulation can potentially include these kind discon-
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tinuities in its domain. Differently from what it is reported by
Asokan & Zabaras in [11], the classical generalized polynomial
chaos method still works although it is not accurate.
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