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ABSTRACT

We study the random laminar wake past a circular cylinder corresponding to a random Reynolds number. The random flow

is computed using two different stochastic methods, i.e. the generalized polynomial chaos and the multi-element generalized

polynomial chaos method. Rigorous convergence to the correct statistics of the velocity field is established. The random flow

is subsequently decomposed into random modes according to a new type of orthogonal decomposition developed in this paper.

This orthogonal decomposition which is substantially built upon the proper orthogonal decomposition framework defines an

optimal set of random projectors for the stochastic Navier-Stokes equations which, after a suitable averaging operation, leads to a

deterministic temporal evolution, i.e. a system of ordinary deterministic differential equations. This allow to construct a reduced

order Galerkin model of the random flow as superimposition of deterministic temporal evolution of random spatial structures.

Numerical applications are presented and discussed.

1 Introduction

The proper orthogonal decomposition (POD) has been pro-

posed by Lumley [1] for detection of spatial coherent patterns

in turbulent flows. He introduced it in the field of hydrody-

namics when there was a need for a mathematical definition of

coherent structures in turbulence. To analyze such temporally

and spatially evolving flows Aubry et al. [2] introduced the

concept of biorthogonal decomposition which is a deterministic

space-time version of the POD ([2]). One of the most remark-

able feature of such a decomposition is that it gives access to

the complexity of the spatial and temporal dynamics simulta-

neously. The flow field is decomposed into a hierarchical set

of spatial and temporal orthogonal modes which are coupled.

This generalizes the notion of spatial and temporal structures

which, for example, can be followed through the various insta-

bilities that the flow undergoes as Reynolds number increases.

Low dimensional linear Galerkin [3; 4], non-linear Galerkin [4]

and spectral viscosity models of various flows have been suc-

cessfully developed by using the POD modes. Moreover, the

method is a way to analyze and reconstruct [5] space time infor-

mation such as numerical data and experimental data measured

simultaneously at various locations by means of recently de-

veloped experimental techniques such as digital particle image

velocimetry (DPIV), digital particle image thermometry (DPIT)

[4], laser scanning techniques, cross-stream rakes of X-wires or

magnetic resonance imaging (MRI).

It is common practice to perform the POD following the

method of snapshots introduced by Sirovich [6]. However what

it is neglected most of the time is that the snapshots taken

form “real world” measurements and computations have ran-

dom components which affect the POD decomposition signifi-

cantly. Therefore there is the need to develop a theory to take

into account the fact that the spectral properties of a random

autocovariance are random variables and random processes.

The quantification of the relation between the stochastic flow

and its random space-time structures extracted by the POD

method is a challenging task as it involves random perturbations

of the autocorrelation operator’s spectral properties. Many at-

tempts to quantify directly the statistics for noisy correlation (or

covariance) matrices have been recently made by several Au-

thors. Everson & Roberts et al. [9] use a Bayesian inference

method to obtain posterior densities for each random eigen-

value; Sengupta & Mitra [7] propose a diagrammatic expansion

and saddle point integration methods to quantify the empirical

eigenvalue density; Hachem et al. [8] and Dozier & Silverstein

[10] give a characterization of the eigenvalue density in terms

of its Stieltjes transform; Hoyle & Rattray[11] use a statistical

mechanics approach (variational mean-field theory) to give an

analytical approximation to the eigenvalue spectral density.

An alternative approach was developed by Venturi in [12]

and it based upon the Kato’s perturbation theory for linear oper-

ators [13]. The statistics for the perturbed energy levels and the

perturbed temporal modes are expressed in form of an explicit

power series in the random flow standard deviation.

However the issue of stochastic low dimensional modeling

and simulation is still an open question. In this paper we inves-

tigate how randomness propagates in Galerkin models of ran-

dom flows. To this end we define a suitable orthogonal set of

random projectors for the Navier Stokes equations. This new

method lies within the possibility to obtain a representation of

a random flow in terms of random weakly orthogonal spatial

modes and deterministic temporal modes. The key idea is to

compute a generalized polynomial chaos expansion ([15]) for

the spatial modes, when given a chaos expansion for the random

flow. This orthogonal decomposition defines an “optimal” set

of random projectors for the stochastic Navier Stokes equations

which, after a suitable averaging operation, leads to a determin-

istic temporal evolution, i.e. a system of ordinary deterministic

differential equations. This allow to construct a reduced order

model of the random flow as superimposition of deterministic

temporal evolution of random spatial structures.



2 Decomposition of the random flow into random modes

We consider a second order random field1 u(x, t;ξ) rep-

resented in terms of an orthogonal polynomial chaos basis{
Γ j (ξ)

}

u(x, t;ξ) =
∞

∑
j=0

û j (x, t)Γ j (ξ) . (1)

We look for a biorthogonal representation of u(x, t;ξ) in the

form

u(x, t;ξ) =
∞

∑
i=1

√
µiψi (t)ΦΦΦi (x;ξ) . (2)

We assume that the temporal modes modes ψi are strongly or-

thogonal in time while the spatial modes ΦΦΦi are weakly orthog-

onal in space with respect to appropriate inner products. We de-

note by ( ,)T the inner product in temporal domain and by { ,}h

(h = 1,2, ..) different types of inner products in spatial domain.

Orthogonality requirements are

(ψi,ψ j)T
= δi j (3){

ΦΦΦi,ΦΦΦ j

}
h
= δi j h = 1,2,3... . (4)

In this paper we consider

(ψi,ψ j)T
:=

∫
T

ψi (t)ψ j (t)dt (5)

and the following three types of spatial inner products

{
ΦΦΦi,ΦΦΦ j

}
0

:=

∫
Ω
〈ΦΦΦi〉 · 〈ΦΦΦ j〉dx (6)

{
ΦΦΦi,ΦΦΦ j

}
1

:=
∫

Ω
〈ΦΦΦi ·ΦΦΦ j〉dx (7)

{
ΦΦΦi,ΦΦΦ j

}
2

:=

∫
Ω
(〈ΦΦΦi ·ΦΦΦ j〉−〈ΦΦΦi〉 · 〈ΦΦΦ j〉)dx (8)

where the averaging operation 〈·〉 is defined as

〈 f 〉=
∫

f (ξ)W (ξ)dξ (9)

and W (ξ) is the joint probability density of ξ. We consider the

positive definite functional

‖u‖2
h :=

∫
T
{u,u}h dt , h = 0,1,2 . (10)

By elementary arguments of the calculus of variations we can

minimize the “distance” (in the generic norm ‖·‖h, h = 0,1,2)

between the expansion (2) and the random field u(x, t,ξ). Phys-

ically this corresponds to look for expansions which minimize

the error in the mean (case h = 0), in the second order moment

1This means a random field with finite variance. Moreover x denotes space,

t time, ξ a set of random variables.

(case h = 1) and in the standard deviation (case h = 2). It is

immediate to see that

‖u‖2
1 = ‖u‖2

2 +‖u‖2
0 (11)

and therefore we expect that the expansion obtained form ‖·‖1

is a sort of compromise between the optimality in the mean and

in the standard deviation. It is also possible to consider other

types of norms, eventually defined as suitable functionals of the

random field being decomposed.

We minimize the error functional

Eh [ψi] :=

∥∥∥∥∥u(x, t;ξ)−
M

∑
i=1

√
µiψi (t)ΦΦΦi (x,ξ)

∥∥∥∥∥

2

h

with respect to an arbitrary variation of ψk to obtain

δψEh = 0 ⇒ ψk (t) =
1√
µk

{u,ΦΦΦk}h . (12)

From (2) and the orthogonality requirements (3), (4) we always

have

ΦΦΦk (x;ξ) =
1√
µk

∫
T

u(x, t;ξ)ψk (t)dt . (13)

Substitution of (13) into (12) gives the temporal eigenvalue

problem

µkψk (t) =
∫

T
Th

(
t, t ′
)

ψk

(
t ′
)

dt ′ (14)

where

Th

(
t, t ′
)

:=
{

u(x, t;ξ) ,u
(
x, t ′;ξ

)}
h
. (15)

Depending on the choice of the inner product {,}h we have the

following covariance kernels

T0

(
t, t ′
)
=

∫
Ω
〈u(x, t;ξ)〉 · 〈u

(
x, t ′;ξ

)
〉dx , (16)

T1

(
t, t ′
)
=

∫
Ω
〈u(x, t;ξ) ·u

(
x, t ′;ξ

)
〉dx . (17)

3 Chaos expansion representations

We assume that we have available a chaos expansion up to

order P for the random field u(x, t;ξ) i.e.

u(x, t;ξ) =
P

∑
l=0

ûl (x, t)Γl (ξ) . (18)

The covariance Th (t, t
′) has the following representation

Th

(
t, t ′
)
=

P

∑
l=0

〈
Γ2

l

〉{
ûl (x, t) , ûl

(
x, t ′
)}

h
. (19)
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Figure 1. Probability density of ν′ (−): comparison with standardized

Gaussian density (−−). The polynomial chaos basis is orthogonal with

respect to the probability density of ν′.

We can solve the eigenvalue problem (14) to get the eigenval-

ues µk and the temporal modes ψk. and subsequently compute

explicitly a chaos expansion for the spatial modes as follows

ΦΦΦk (x;ξ) =
P

∑
l=0

Φ̂ΦΦkl (x)Γl (ξ) . (20)

where

Φ̂ΦΦk j (x) =
1√
µk

∫
T

û j (x, t)ψk (t)dt . (21)

4 Application to random laminar wake past a cylinder

In this section we study to the random laminar wake past a

circular cylinder corresponding to a random Reynolds number.

First we simulate the random flow using the generalized poly-

nomial chaos [14; 15] and the multi-element generalized poly-

nomial chaos [16] method so that we can and establish rigorous

convergence to the correct statistics. Subsequently we decom-

pose the flow according to the new type of expansion we have

introduced in §2 and we study the low dimensional model aris-

ing form random projection.

In order to construct the generalized chaos basis we need an

analytical expression for the probability density of ν = 1/Re

(random input). We assume that the Reynolds number Re is

Gaussian distributed, conditioned to Re > 0, with mean µ and

standard deviation σ. It is useful to perform the following de-

composition

ν = ν0 +σνν′ (22)

where ν′ = (ν−ν0)/σν is a random variable with zero mean,

standard deviation 1 and probability density given by

W
(
ν′
)
=

σνe
−

(
µ− 1

(σνy+ν0)

)2

2σ2

[∫ ∞
0

1√
2πσ

e
− (µ−t)2

2σ2 dt

]
(σνy+ν0)

2
√

2πσ

. (23)

This function is drawn in figure 1 for µ = 100 and σ = 10

together with the normal distribution. The generalized chaos

expansion for the random flow corresponding to a Gaussian

Reynolds number is constructed according to the measure (23).
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Figure 2. Standard deviations of velocity components at different time

instants. Streamwise component (left); crossflow component (right).

4.1 Polynomial chaos representation of Navier-Stokes

equations with random Reynolds number

We consider the expansion

v(x, t;ξ) =
P

∑
j=0

v̂ j (x, t)Γ j (ξ) (24)

where generalized chaos basis
{

Γ j

}
is orthogonal with respect

to the measure (23). Substitution of (24) into the Navier-Stokes

equation and subsequent projection onto
{

Γ j

}
leads to the fol-

lowing system of partial differential equations (k = 0, ..,P)

∂v̂k

∂t
+

P

∑
i, j=0

ei jk

e0kk

(v̂i ·∇) v̂ j = ∇p̂k +ν0∇2v̂k +σν

P

∑
j=0

e1 jk

e0kk

∇2v̂ j

(25)

∇ · v̂k = 0 (26)

where

ei jk =
∫

Γi(ν
′)Γ j(ν

′)Γk(ν
′)W (ν′)dν′ . (27)

As initial condition for this system we use a fully converged

deterministic wake at Re= 100. In figure 2 we show how the un-

certainty due to the random Reynolds number propagates in the

wake at different time instants. In figure 3 we show a compar-

ison between the generalized polynomial chaos and the multi-

element method [16]. As expected, since the period of inte-

gration is quite small (TU/D = 6) the generalized polynomial

chaos simulation and and the multi-element simulation give the

same results.

4.2 Stochastic eigen-decomposition and mode analysis

We have extracted 41 equispaced snapshots of the random

flow field, including the first one which is deterministic, in one

shedding period of the mean flow. We decompose the random

velocity field v(x, t;ξ) into a mean flow with a superimposed
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Figure 3. Convergence of ME-gPC method. Standard deviations of ve-

locity components along the crossline x/D = 2 at time tU/D = 3.75.

Streamwise component (a); crossflow component (b). gPC (−)(order 3),

ME-gPC (· · · ) (2 elements, order 3), ME-gPC (−·−) (4 elements, order

3), ME-gPC (−−) (10 elements, order 3).
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Figure 4. Eigenvalues of the covariances (19) computed using different

inner products.

random fluctuation2

v(x, t;ξ) = U(x)+u(x, t;ξ) , (28)

where

U(x) =
1

|T |

∫
T
〈v(x, t;ξ)〉dt =

1

|T |

∫
T

v0 (x, t)dt . (29)

We expand u into our generalized POD series

uk (x, t;ξ) =
M

∑
j=0

ψ j (t)Φk
j (x;ξ) , k = 1, ..,d . (30)

The random POD basis {ΦΦΦk (x;ξ)} is strongly divergence free

since

∇ ·ΦΦΦk (x;ξ) =
1√
µk

∫
T

∇ ·u(x, t;ξ)ψk (t)dt = 0 . (31)

The eigenvalues of the covariances (19) are shown in figure 4.

Figure 5 shows the streamwise component of the mean and the

standard deviation of the normalized spatial modes obtained us-

ing the inner product {,}1.

4.3 Low dimensionality of the random wake

We study convergence of the mean and the standard deviation

of the flow as function of the dimensionality of the expansion M.

2There are 2 ways to define the “mean” flow here. One is a deterministic

mean U(x) = 1
|T |

∫
t〈v(x, t;ξ)〉dt. The other one is a stochastic time average

U(x;ξ) = 1
|T |

∫
t v(x, t;ξ)dt. We use the deterministic mean.
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Figure 5. Streamwise component of normalized random spatial modes

obtained using the second order moment inner product {,}1: mean (left)

and standard deviation (right).
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Figure 6. Mean (left) and standard deviation (right) of streamwise ve-

locity component along the crossline x/D= 2 as function of the number

of modes: convergence to stochastic DNS simulation. The orthogonal

expansion is obtained in the second order moment inner product {,}1.

We have the expressions

〈u(M)〉 =
M

∑
k=1

√
µkψkΦ̂ΦΦk0 , (32)

σu(M) =




P

∑
l=1

(
M

∑
k=1

√
µkψkΦ̂ΦΦkl

)2

〈Γ2
l 〉




1
2

. (33)

Figure 6 shows convergence of the mean and the standard devia-

tion of the streamwise velocity component as function of the the

number of POD modes. The orthogonal expansion is obtained

in the second order moment inner product {,}1.

We define the global error in the L2 (Ω×T ) norm as follows

ε〈u〉 =
∥∥∥〈u〉−〈u(M)〉

∥∥∥
Ω×T

(34)

εσu =
∥∥σu −σu(M)

∥∥
Ω×T

(35)

where

‖g‖2
Ω×T :=

∫
T

∫
Ω

g ·gdxdt . (36)



In figure 7 we show the errors (34) and (35) with respect to
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Figure 7. Error in the L2 norm with respect to DNS of POD projection

versus the number of modes. Error in the mean (left) and in the stan-

dard deviation (right). Shown are results obtained using different inner

products.

DNS versus the number of modes using different types of inner

products. As previously discussed we see that the expansion

obtained using the inner product {,}1 is a sort of compromise

between {,}2 and {,}0 for what concerns the error in the mean

and in the standard deviation. Also we note that the error plots

for the cases h = 0 and h = 2 represent the minimum errors

achievable on the mean and the standard deviation respectively

for a certain number of POD modes.

5 Random projection of Navier-Stokes equations

The deterministic nature of the temporal modes opens the

possibility to build up a stochastic low dimensional model of the

random flow. In fact the weak orthogonality of random spatial

modes can be used to define random POD projectors in a quite

straightforward way. To this end we consider the Navier-Stokes

equations (double index here means summation)

∂vk

∂t
+ v j ∂vk

∂x j
=− ∂p

∂xk
+ν

∂2vk

∂x j∂x j
(37)

Substitution of (28) into (37) yields

∂uk

∂t
+U j ∂Uk

∂x j
+U j ∂uk

∂x j
+u j ∂Uk

∂x j
+u j ∂uk

∂x j
=

− ∂p

∂xk
+ν

∂2uk

∂x j∂x j
+ν

∂2Uk

∂x j∂x j
. (38)

We expand u in a generalized POD series (30) and we perform

a Galerkin projection of Navier Stokes equations onto the (not

normalized) random, divergence free, spatial modes ΦΦΦ j using

the generic inner product {,}h. We obtain

{Φk
l

∂ψl

∂t
+U j ∂Uk

∂x j
+U jψl

∂Φk
l

∂x j
+ψlΦ

j
l

∂Uk

∂x j
+

ψlΦ
j
l ψn

∂Φk
n

∂x j
−ν

(
∂2Uk

∂x j∂x j
+ψl

∂2Φk
l

∂x j∂x j

)
,Φk

m}h = 0 . (39)

The pressure term drops out because of the divergence free con-

straint and the boundary conditions3. The following system of

3In fact by the Gauss formula we have∫
Ω

ΦΦΦm ·∇pdx = −
∫

Ω
∇ ·ΦΦΦm pdx+

∫
∂Ω

p(ΦΦΦm ·n)dx

= 0+
∫

∂Ω
p(ΦΦΦm ·n)dx . (40)

ordinary differential equations is obtained

dψm

dt
=

1

µm

(
−C

(h)
m −L

(h)
ml ψl −Q

(h)
mlnψlψn

)
(41)

The initial condition for ψm is

ψm (0) =
1√
µm

{u(x,0;ξ) ,ΦΦΦm (x;ξ)}h . (42)

Explicit expressions for C
(h)
m , L

(h)
ml and Q

(h)
mln for h = 0,1,2 will

be reported elsewhere.
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Figure 8. Case h = 1 (second order moment inner product). Compari-

son between temporal evolution predicted by the system (41) (-) and the

DNS based evolution (- -)

5.1 POD simulation of the random wake

In figure 8 we compare the temporal modes extracted from

the DNS to the temporal evolution predicted by the system (41).

We define the time dependent error in the L2 spatial norm for the

mean and the standard deviation of the velocity as follows

e〈u〉 (t) =
∥∥∥〈u〉−〈u(M)〉

∥∥∥
Ω

(43)

eσu (t) =
∥∥σu −σu(M)〉

∥∥
Ω

(44)

The last integral is 0 on all sides where we have deterministic Dirichlet B.C.

(ΦΦΦm ≡ 0). It is 0 on the periodic sides of the domain as they have opposite

orientations in the integration path and it is zero on the outflow where p ≡ 0.
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Figure 9. POD Simulation errors as function of time. Left: error in the

mean (43); right: error in the standard deviation (44). Shown are results

obtained using different types of inner products.

where

‖u‖2
Ω =

∫
Ω

u ·udx . (45)

In figure 9 we show (43) and (43) as function of the number of

modes for the inner product {,}1, {,}1 and {,}2 respectively.

6 Summary and conclusions

We have studied the random laminar wake past a circular

cylinder corresponding to a random Reynolds number. We sim-

ulated the random flow using the generalized polynomial chaos

method and the multi element generalized polynomial chaos

method to establish rigorous convergence to the correct statis-

tics. Subsequently we decomposed the random flow according

to a new type of expansion developed in §2 and we constructed

in §5 a low dimensional stochastic model of the wake though

Galerkin projection onto random spatial modes. We have found

that the accuracy of this reduced order model significantly de-

pends on the type of inner product {,}h used to decompose the

random flow.

Subsequent research will focus on obtaining better low

dimensional representations of the random flow in order to

achieve optimal convergence and provide a new tool for detec-

tion of spatial coherent patterns in turbulent flows.
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