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Abstract High-dimensionality is one of the major challenges in kinetic model-
ing and simulation of realistic physical systems. The most appropriate numerical
scheme needs to balance accuracy and computational complexity, and it also needs
to address issues such as multiple scales, lack of regularity, and long-term inte-
gration. In this chapter, we review state-of-the-art numerical techniques for high-
dimensional kinetic equations, including low-rank tensor approximation, sparse grid
collocation, and ANOVA decomposition.

1 Introduction

Kinetic equations are partial differential equations involving probability density
functions (PDFs). They arise naturally in many different areas of mathematical
physics. For example, they play an important role in modeling rarefied gas dy-
namics [12, 13], semiconductors [68], stochastic dynamical systems [18, 63, 74–76,
103, 114], structural dynamics [9, 61, 100], stochastic partial differential equations
(PDEs) [19,57,66,112,113], turbulence [35,71,72,90], system biology [30,85,123],
etc. Perhaps, the most well-known kinetic equation is the Fokker-Planck equa-
tion [74, 96, 107], which describes the evolution of the probability density func-
tion of Langevin-type dynamical systems subject to Gaussian white noise. An-
other well-known example of kinetic equation is the Boltzmann equation [115]
describing a thermodynamic system involving a large number of interacting parti-
cles [13]. Other examples that may not be widely known are the Dostupov-Pugachev
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Table 1 Examples of kinetic equations in different areas of mathematical physics.

equations [26, 61, 103, 114], the reduced-order Nakajima-Zwanzig-Mori equations
[24, 113, 127], and the Malakhov-Saichev PDF equations [66, 112] (see Table 1).
Computing the numerical solution to a kinetic equation is a challenging task that
needs to address issues such as:

1. High-dimensionality: Kinetic equations describing realistic physical systems
usually involve many phase variables. For example, the Fokker-Planck equation
of classical statistical mechanics is an evolution equation for a joint probability
density function in n phase variables, where n is the dimension of the underlying
stochastic dynamical system, plus time.

2. Multiple scales: Kinetic equations can involve multiple scales in space and time,
which could be hardly accessible by conventional numerical methods. For ex-
ample, the Liouville equation is a hyperbolic conservation law whose solution is
purely advected (with no diffusion) by the underlying system’s flow map. This
can easily yield mixing, fractal attractors, and all sorts of complex dynamics.

3. Lack of regularity: The solution to a kinetic equation is, in general, a distribution
[50]. For example, it could be a multivariate Dirac delta function, a function with
shock-type discontinuities [19], or even a fractal object (see Figure 1 in [113]).
From a numerical viewpoint, resolving such distributions is not trivial although in
some cases it can be done by taking integral transformations or projections [122].

4. Conservation properties: There are several properties of the solution to a kinetic
equation that must be conserved in time. The most obvious one is mass, i.e.,
the solution to a kinetic equation always integrates to one. Another property that
must be preserved is the positivity of the joint PDF, and the fact that a partial
marginalization still yields a PDF.

5. Long-term integration: The flow map defined by nonlinear dynamical systems
can yield large deformations, stretching and folding of the phase space. As a con-
sequence, numerical schemes for kinetic equations associated with such systems
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will generally loose accuracy in time. This is known as long-term integration
problem and it can be eventually mitigated by using adaptive methods.

Over the years, many different techniques have been proposed to address these
issues, with the most efficient ones being problem-dependent. For example, a widely
used method in statistical fluid mechanics is the particle/mesh method [77, 89–91],
which is based directly on stochastic Lagrangian models. Other methods are based
on stochastic fields [109] or direct quadrature of moments [33]. In the case of Boltz-
mann equation, there is a very rich literature. Both probabilistic approaches such
as direct simulation Monte Carlo [8, 97], as well as deterministic methods, e.g.,
discontinuous Galerkin and spectral methods [15, 16, 31], have been proposed to
perform simulations. However, classical techniques such as finite-volumes, finite-
differences or spectral methods, are often prohibitive in terms of memory require-
ments and computational cost. Probabilistic methods such as direct Monte Carlo are
extensively used instead because of their very low computational cost compared to
the classical techniques. However, Monte Carlo usually yields poorly accurate and
fluctuating solutions, which need to be post-processed appropriately, for example
through variance reduction techniques. We refer to Di Marco and Pareschi [67] for
a recent excellent review.

In this chapter, we review the state-of-the-art in numerical techniques to ad-
dress the high-dimensionality challenge in both the phase space and the space of
parameters of kinetic systems. In particular, we discuss the sparse grid method
[84, 102], low-rank tensor approximation [5, 17, 29, 40, 59, 79, 80], and analysis
of variance (ANOVA) decomposition [11, 36, 60, 125] including Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) [73] closures. These methods have been estab-
lished as new tools to address high-dimensional problems in scientific computing
during the last years, and here we discuss those in the context of kinetic equations,
particularly in the deterministic Eulerian approach. As we will see, most of these
methods allow us to reduce the problem of computing high-dimensional PDF so-
lutions to sequences of problems involving low-dimensional PDFs. The range of
applicability of the numerical methods is sketched in Figure 1 as a function of the
number of phase variables n and the number of parameters m appearing in the ki-
netic equation.

2 Numerical Methods

This chapter discuss three classes of algorithms to compute the numerical solution
of high-dimensional kinetic equations. The first class is based on sparse grids, and
we discuss its construction in both the phase space and the space of parameters.
The second class is based on low-rank tensor approximation and alternating direc-
tion methods, such as alternating least squares (ALS). The third class is based on
ANOVA decomposition and BBGKY closures.
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Fig. 1 Range of applicability of different numerical methods for solving kinetic equations as a
function of the number of phase variables and the number of parameters appearing in the equa-
tion. The first name refers to the numerical method we employ to discretize the phase variables,
the second name we employ to discretize the space of parameters. For example, DG-PCM refers
to an algorithm in which we discretize the phase variables with discontinuous Galerkin methods
(DG), and random parameters with tensor product probabilistic collocation (PCM). Other meth-
ods listed are: canonical tensor decomposition (CTD), tensor train (TT), high-dimensional model
representation (ANOVA), sparse grids (SG), and quasi Monte Carlo (QMC).

2.1 Sparse Grids

The sparse grid technique [10, 37] has been developed as a major tool to break the
curse of dimensionality of grid-based approaches. The key idea relies on a tensor
product hierarchical basis representation, which can reduce the degrees of freedom
without losing much accuracy. Early work on sparse grid techniques can be traced
back to Smolyak [102], in the context of high-dimensional numerical integration.
The scheme is based on a proper balancing between the computational cost and the
corresponding accuracy by seeking a proper truncation of the tensor product hierar-
chical bases, which can be formally derived by solving an optimization problem of
cost/benefit ratios [41]. Sparse grid techniques have been incorporated in various nu-
merical methods for high-dimensional PDEs, e.g., in finite element methods [10,99],
finite difference methods [42], spectral methods [38, 101], and collocation methods
for stochastic differential equations [64, 78, 117]. More recently, sparse grids have
been proposed within the discontinuous Galerkin (DG) framework to simulate el-
liptic and hyperbolic systems using wavelet bases [43, 116].

The sparse grid formulation is based on a hierarchical set of basis functions in
one-dimension. For instance, we can consider basis functions in a space Vk of piece-
wise polynomials of degree at most q on the k-th level grid that consists of 2k uni-
form intervals, i.e.,

Vk
.
= {v |v ∈ Pq(I j

k ), I j
k = [2−k j, 2−k( j+1)], j = 0, · · · ,2k−1},
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on Ω = [0, 1]. Clearly, we have

V0 ⊂V1 ⊂V2 ⊂V3 ⊂ ·· · .

These basis functions are suitable for the discontinuous Galerkin framework. Then,
we define Wk as the orthogonal complement of Vk−1 on Vk with respect to the L2
inner product on Ω , that is,

Vk−1⊕Wk =Vk, Vk−1 ⊥Wk,

with W0 =V0. This yields the hierarchical representation of

Vk =⊕0≤ j≤kWj.

Next, define the multidimensional increment space as defined as Wl = Wl1,z1 ⊗
Wl2,z2⊗·· ·⊗WlN ,zN with l = (l1, · · · , lN) as the multivariate mesh level. Accordingly,
the standard tensor product space V` can be represented as

V` =
⋃
|l|∞≤`

Wl , (1)

and the sparse grid approximation space as

Ṽ` =
⋃
|l|≤`

Wl , (2)

where |l|∞ = maxi li and |l| = ∑
N
i=1 li. Then, Ṽ` ⊂ V`. The number of degrees of

freedom of Ṽ` is significantly smaller than the one of V`. This set of basis functions
is also called multi-wavelet basis and it has been employed with the discontinuous
Galerkin method to study the Vlasov and the Boltzmann equations [43, 101]. In
particular, for sufficiently smooth solutions, it was shown in [101, 116] that a semi-
discrete L2 stability condition and an error estimate of the order O

(
(logh)Nhq+1/2

)
can be obtained. We emphasize that although the computational cost of the sparse
grid formulation is significantly smaller than the full tensor product, the curse of
dimensionality still remains as the sparse grid level ` increases. For this reason,
[43,101,116] can handle problems with less than ten dimensions in the phase space.

The application of the sparse grid technique in the space of parameters differs
from the one we just described only in regard of the choice of the basis functions. In
fact, in this case, we are usually interested in computing multi-dimensional integrals
in the form

p(z) =
∫
Rm

p(z,b)db'
q

∑
k=1

wk p(z,bk), (3)

where b = (b1, ...,bm). The collocation points bk = (bk
1, ...,b

k
m) and quadrature

weights wk are obtained by suitable cubature rules with high polynomial exactness,
e.g., Clenshaw-Curtis or Gauss abscissae [118]. More recent sparse collocation tech-
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niques can increase the number of dimensions that can be handled in the space of
parameters up to hundreds [119, 121].

2.2 Low-rank Tensor Approximation

Low-rank tensor approximation has been established as a new tool to overcome the
curse of dimensionality in representing high-dimensional functions and the solu-
tion to high-dimensional PDEs. The method has been recently applied to stochastic
PDEs [25,29,56,69,79], approximation of high-dimensional Green’s functions [44],
the Boltzmann equation [48,55], and Fokker-Planck equation [2,22,49,53]. The key
idea of low-rank tensor approximation [17,40,81] is to represent a multivariate func-
tion in terms of series involving products of low-dimensional functions. This allows
us to reduce the problem of computing the solution from high-dimensional PDEs to
a sequence of low-dimensional problems that can be solved recursively and in paral-
lel, e.g., by alternating direction algorithms such as alternating least squares [20,25]
and its parallel extension [52]. These algorithms are usually based on low-rank ma-
trix techniques [39], and they have a convergence rate that depends on the type of
kinetic equation and on its solution.

The most simplest tensor format is a rank one tensor of an N-dimensional
function, p(z1, · · · ,zN)= p1(z1)p2(z2) · · · pN(zN), where p j(z j) are one-dimensional
functions. Upon discretization we can write p in a tensor notation as

p = p1⊗·· ·⊗pN , (4)

where p j is a vector of length qz corresponding to the discretization of p j(z j) with
qz degrees of freedom1. More generally, we have a summation of rank-one tensors

p(z1, · · · ,zN) =
R

∑
r=1

αr pr
1(z1)pr

2(z2) · · · pr
N(zN), (5)

and

p =
R

∑
r=1

αrpr
1⊗pr

2⊗·· ·⊗pr
N , (6)

where R is the tensor rank or separation rank. This representation is also known as
separated series expansion or canonical tensor decomposition. The main advantage
of using a representation in the form (5)–(6) to solve a high-dimensional kinetic
PDE relies on the fact that the algorithms to compute pr

j and the normalization fac-

1 For instance, if we represent p j(z j) in terms of an interpolant

p j(z j) =
qz

∑
k=1

p j,kφ j,k(z j),

then p j = (p j,1, · · · ,p j,qz
).
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tors αr involve operations with one-dimensional functions. In principle, the compu-
tational cost of such algorithms scales linearly with respect to the dimension N of the
phase space, thus potentially avoiding the curse of dimensionality. The representa-
tion can be generalized to any combination of low-dimensional separated functions.
Canonical tensor decompositions have been employed to compute the solution to
the Malakhov-Saichev kinetic equation [20], the Vlasov-Poisson equation [27], and
functional differential equations [110].

More advanced tensor decomposition techniques involve Tucker decomposition,
tensor train decomposition (TT), and hierarchical Tucker decomposition (HT). In
particular, the tensor train decomposition is in the form of

p(z1, · · · ,zN) = Q1(z1)Q2(z2) · · ·QN(zN), Q j(z j) ∈ RR j−1×R j , (7)

where the tensor rank becomes a tuple of (R1, · · · ,RN−1) with R0 = RN = 1. In each
direction j, the index that runs over RR j−1 and RR j takes care of the coupling to
the j−1-th and the j+1-th dimension, respectively. A discretization of (7) with qz
degrees of freedom in each dimensions yields

p =
R0

∑
r0=1
· · ·

RN

∑
rN=1

Qr0,r1
1 ⊗Qr1,r2

2 ⊗·· ·⊗QrN−1,rN
N , (8)

where Qr j−1,r j
j is a vector of length qz. With a payoff of an additional tensor rank

dimension, the problem of constructing a tensor train decomposition is closed and it
can be solved to any given error tolerance or fixed rank [86]. The algorithm is based
on a sequence of SVD applied to the matricizations of the tensor, i.e. the so-called
high-order singular value decomposition (HOSVD) [39]. Methods for reducing the
computational cost of tensor train are discussed in [82, 87, 126]. Applications to the
Vlasov kinetic equation can be found in [23, 46, 58].

2.2.1 Temporal Dynamics

To include temporal dynamics in the low rank tensor representation of a field we
can simply add additional time-dependent functions, i.e., represent p(t,z1, ...,zN) as

p(t,z1, · · · ,zN) =
R

∑
r=1

αr pr
t (t)pr

1(z1)pr
2(z2) · · · pr

N(zN). (9)

This approach has been considered by several authors, e.g., [2,17], and it was shown
to be effective for problems dominated by diffusion. However, for complex transient
problems (e.g., hyperbolic dynamics), such approach is not practical as it requires a
high resolution in the time domain. To address this issue, a discontinuous Galerkin
method in time was proposed by Nouy in [79]. The key idea is to split the integration
period into small intervals (finite elements in time) and then consider a space-time
separated representation of the solution within each interval.
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Alternatively, one can consider an explicit or implicit time-integration schemes
[20,59]. In this case, the separated representation of the solution is computed at each
time step. In such representations we look for expansions in the form

p(t,z1, · · · ,zN) =
R

∑
r=1

αr(t)pr
1(z1, t)pr

2(z2, t) · · · pr
N(zN , t). (10)

Here, we demonstrate the procedure with reference to the simple Crank-Nicolson
scheme. To this end, we consider the linear kinetic equation in the form

∂ p(z, t)
∂ t

= L(z)p(z, t), (11)

where z = (z1, ...,zN) is the vector of phase variables and L(z) is a linear operator.
For instance, in the case of the Fokker-Planck equation we have

L(z) =−
N

∑
j=1

(
∂G j

∂ z j
+G j

∂

∂ z j

)
+

1
2

N

∑
i, j=1

(
∂ 2bi j

∂ zi∂ z j
+bi j

∂ 2

∂ zi∂ z j
+2

∂bi j

∂ zi

∂

∂ z j

)
.

We discretize (11) in time by using the Crank-Nicolson scheme. This yields

p(z, tk+1)− p(z, tk)
∆ t

=
1
2
(L(z)p(z, tk+1)+L(z)p(z, tk))+ τk(z), ∆ t = tk+1− tk,

i.e., (
I− 1

2
∆ tL(z)

)
p(z, tk+1) =

(
I +

1
2

∆ tL(z)
)

p(z, tk)+ τk(z), (12)

where τk(z) is the truncation error arising from the temporal discretization. Assum-
ing that p(z, tk) is known, (12) is a linear equation for p(z, tk+1) which can be written
concisely (at each time step) as

A(z) p(z) = f (z)+ τ(z), (13)

where

A(z) .
=

(
I− 1

2
∆ tL(z)

)
, f (z) .

=

(
I +

1
2

∆ tL(z)
)

p(z, tk).

Note that we dropped the time tk+1 in p(z, tk+1) with the understanding that the
linear system (13) has to be solved at each time step. We emphasize that other multi-
step and time-splitting schemes [27,58] - including geometric integrators [45] - can
be used instead of the Crank-Nicolson method.
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2.2.2 Alternating Direction Algorithms

The low-rank tensor decomposition is particularly convenient when the system op-
erator A(z) and the right-hand-side f (z) are separable with respect to z, i.e.,

A(z) =
nA

∑
k=1

Ak
1(z1) · · ·Ak

N(zN), f (z) =
n f

∑
k=1

f k
1 (z1) · · · f k

N(zN). (14)

Note that A(z) is separable if L(z) is separable. A simple example of a two-
dimensional separable operator L(z) with separation rank nL = 3 is

L(z1,z2) = z2
∂ 2

∂ z1∂ z2
+ sin(z1)z2

∂ 2

∂ z2
1
+ e−z2

1
∂

∂ z2
. (15)

Another example is the Liouville operator associated to nonlinear dynamical sys-
tems with polynomial nonlinearities. A substitution of the tensor representation (5)
into (12) yields the residual2

W (z) = A(z)p(z)− f (z), (16)

which depends on z and on all degrees of freedom associated with pr
j. To determine

such degrees of freedom we require that

‖W (z)‖= ‖A(z)p(z)− f (z)‖ ≤ ε, (17)

in an appropriately chosen norm, and for a prescribed target accuracy ε . Ideally,
the optimal tensor rank of can be defined as the minimal R such that the solution
has an exact tensor decomposition with R terms, i.e., ε = 0. However, the storage
requirements and the computational cost increase with R, which makes the tensor
decomposition attractive for small R. Therefore, we look for a low-rank tensor ap-
proximation of the solution to (13), with a reasonable accuracy ε . Although there
are at present no useful theorems on the size R needed for a general class of func-
tions, there are examples where tensor expansions are exponentially more efficient
than one would expect a priori (see [5]).

Many existing algorithms to determine the best low-rank approximation of
the solution to (13) are based on alternating direction methods. The key idea is
to construct the tensor expansion (5) iteratively by determining pr

j(z j) one at a
time while freezing the degrees of freedom associated with all other functions.
This yields a sequence of low-dimensional problems that can be solved efficiently
[5, 6, 59, 79, 80, 83], eventually in parallel [52]. Perhaps, one of the first alternating
direction algorithms to compute a low rank representation of the solution of a high-
dimensional PDE was the one proposed in [2]. To clarify how the method works in
simple terms, suppose we have constructed an approximated solution to the system

2 The residual W (z) incorporates both the truncation error arising from the time discretization as
well as the error arising from the finite-dimensional expansion (5).
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(12) in the form (5), i.e., suppose we have available pR(z) with tensor rank R. Then
we look for an enriched solution in the form

pR(z)+ r1(z1) · · ·rN(zN),

where {r1(z1), ...,rN(zN)} are N unknown functions to be determined. In the alter-
nating direction method, such functions are determined iteratively, one at a time.
Typical algorithms to perform such iterations are based on alternating least squares
(ALS),

min
r j

∥∥∥∥∥ nA

∑
k=1

Ak
1 · · ·Ak

N
(

pR + r1 · · ·rN
)
−

n f

∑
k=1

f k
1 · · · f k

N

∥∥∥∥∥
2

, (18)

or alternating Galerkin methods,〈
q,

nA

∑
k=1

Ak
1 · · ·Ak

N
(

pR + r1 · · ·rN
)〉

=

〈
q,

n f

∑
k=1

f k
1 · · · f k

N

〉
, (19)

where 〈·〉 is an inner product (multi-dimensional integral with respect to z), and
q is a test function, typically chosen as q(z) = r1(z1) · · ·φ j,k(z j) · · ·rN(zN) for k =
1, ...,qz. In a finite-dimensional setting, the minimization problem (18) reduces to
the problem of finding the minimum of a scalar function in as many variables as the
number of unknowns we consider in each basis function r j(z j), say qz. Similarly,
the alternating direction solution to (19) yields a sequence of low-dimensional linear
systems of size qz× qz. If A(z) is a nonlinear operator, then we can still solve (18)
or (19), e.g., by using Newton iterations. Once the functions {r1(z1), ...,rN(zN)}
are computed, they are normalized (yielding the normalization factor αR+1) and
added to pR(z) to obtain pR+1(z). The tensor rank is increased until the norm of the
residual (16) is smaller than the desired target accuracy ε (see equation (17)). We
would like to emphasize that it is possible to include additional constraints when
solving the linear system (13) with alternating direction algorithms. For example,
one can impose that the solution p(z) is positive and it integrates to one [59], i.e., it
is a probability density function.

The enrichment procedure just described has been criticized in the literature due
to its slow convergence rate, in particular for equations dominated by advection [79].
Depending on the criterion used to construct the tensor decomposition, the enrich-
ment procedure might not even converge. To overcome this problem, Doostan and
Iaccarino [25] proposed an alternating least-square (ALS) algorithm with granted
convergence properties. The algorithm simultaneously updates the entire rank of
the basis set in the j-th direction. In this formulation, the least square approach (18)
becomes

min{
p1

j ,...,p
R
j

}
∥∥∥∥∥ nA

∑
k=1

Ak
1 · · ·Ak

N

(
R

∑
r=1

αr pr
1 · · · pr

N

)
−

n f

∑
k=1

f k
1 · · · f k

N

∥∥∥∥∥
2

.
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The computational cost of this method clearly increases compared to (18). In fact, in
a finite dimensional setting, the simultaneous determination of {p1

j , ..., pR
j } requires

the solution of a Rqz×Rqz linear system. However, this algorithm usually results
in a separated solution with a lower tensor rank R than the regular approach, which
makes the algorithm more favorable to advection dominated kinetic systems. The
basic idea of updating the entire rank of functions depending on a specific variable
can be also applied to the alternating Galerkin formulation (19) (see [20]). In section
4 we provide a numerical example of such algorithm - see also Algorithm 1.

Further developments and applications of low-rank tensor approximation meth-
ods can be found in the excellent reviews papers [3, 40, 81]. Gradient-based and
Newton-like methods modifying and improving the basic ALS algorithm are dis-
cussed in [1, 14, 28, 34, 54, 88, 93, 105, 106], Convergence of ALS and its parallel
implementation has been studied in [21, 52, 70, 108].

2.3 ANOVA Decomposition and BBGKY Hierarchies

Another typical approach to model high-dimensional functions is based on the
truncation of interactions. Hereafter we discuss two different methods to perform
such approximation, namely, the ANOVA decomposition [11, 36, 60, 125] and the
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) technique. Both these meth-
ods rely on a representation of multivariate functions in terms of series expansions
involving functions with a smaller number of variables. For example, a second-order
ANOVA approximation of a multivariate PDF in N variables is a series expansion
involving functions of at most two variables. As we will see, both the ANOVA
decomposition and the BBGKY technique [73] yield a hierarchy of coupled PDF
equations for each given stochastic dynamical system. These methods are especially
appropriate for anisotropic problems where dimensional adaptivity can be pursued.

The ANOVA series expansion [11, 41, 120] involves a superimposition of func-
tions with an increasing number of variables. Specifically, the ANOVA decomposi-
tion of an N-dimensional PDF takes the from

p(z1,z2, ...,zN) = p0 +
N

∑
i=1

pi(zi)+
N

∑
i< j

pi j(zi,z j)+
N

∑
i< j<k

pi jk(zi,z j,zk)+ · · · . (20)

The function p0 is a constant. The functions pi(zi), which we shall call first-order
interaction terms, give us the overall effects of the variables zi in p as if they were
acting independently of the other variables. The functions pi j(zi,z j) represent the
interaction effects of the variables zi and z j, and therefore they will be called second-
order interactions. Similarly, higher-order terms reflect the cooperative effects of
an increasing number of variables, and the series is usually truncated at a certain
interaction order. These terms can be computed in different ways [92,124], however,
we point out the following procedure,
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pK(zK) =
∫

p(z)dµ(zK′)− ∑
S⊂K

pT (zS), (21)

where S ⊂ K ⊂ {1, · · · ,N}, K′ is the complement of K in {1, · · · ,N}, pK(zK) =
p j1,..., jk(z j1 , · · · ,z jk) for K = { j1, · · · , jk}, and µ is the Lebesgue measure. Due to
its construction, this procedure generates ANOVA terms that are orthogonal with
respect to µ , that is,

∫
pK(zK)pS(zS)dµ(z), for all S 6=K, which provides an effective

criterion for dimensional adaptivity [65, 120].
The ANOVA expansion can be readily applied in the space of parameters of ki-

netic systems since the parameters do not depend on time and each terms computed
at the initial time can be updated independently. To pursue a collocation approach
similar to the sparse grid collocation method (3), we replace the Lebesgue measure
with a Dirac measure dµ = δ (z− c) at an appropriate anchor point c, and consider
the corresponding collocation scheme [118]. This method is called the anchored-
ANOVA method (PCM-ANOVA) [7,32,36,120]. The anchor points are often taken
as the mean value of the random variable in each dimension [125]. Then, each PDF
equations in Table 1 can be solved at the PCM-ANOVA collocation points in the
space of parameters.

On the other hand, representing the dependence of the solution PDF on the phase
variables through the ANOVA expansion yields a hierarchy of coupled PDF equa-
tions that resembles the BBGKY hierarchy of classical statistical mechanics. Let us
briefly review the BBGKY technique type with reference to a nonlinear dynamical
system in the form

ż(t) = G(z, t), z(0) = zzz0(ω), (22)

where z(t)∈RN is a multi-dimensional stochastic process including both phase and
parametric variables, G :RN+1→RN is a Lipschitz continuous (deterministic) func-
tion, and z0 ∈ RN is a random initial state. The joint PDF of z(t) evolves according
to the Liouville equation

∂ p(z, t)
∂ t

+∇ · [G(z, t)p(z, t)] = 0, z ∈ RN , (23)

whose solution can be computed numerically with standard discretization methods
only for relatively small N. This leads us to look for PDF equations involving only a
reduced number of phase variables, for instance, the PDF of each component zi(t).
Such equations can be formally obtained by marginalizing (23) with respect to dif-
ferent phase variables and discarding terms at infinity. This yields, for example,

∂ pi(zi, t)
∂ t

=− ∂

∂ zi

∫
[Gi(y, t)δ (zi− yi(t))p(y, t)]dy, (24)



Numerical methods for high-dimensional kinetic equations 13

∂ pi j(zi,z j, t)
∂ t

=− ∂

∂ zi

∫
[Gi(y, t)δ (zi− yi(t))δ (z j− y j(t))p(y, t)]dy

− ∂

∂ z j

∫
[G j(y, t)δ (zi− yi(t))δ (z j− y j(t))p(y, t)]dy. (25)

Higher-order PDF equations can be derived similarly. The computation of the inte-
grals in (24) and (25) requires the full joint PDF of z(t), which is available only if
we solve the full Liouville equation (23). Alternatively, we can solve (24) or (25)
directly, provided we need to introduce approximations. The most common one is
to assume that the joint PDF p(z, t) can be written in terms of lower-order PDFs,
e.g., as p(z, t) = p(z1, t) · · · p(zN , t) (mean-field approximation). By using integra-
tion by parts, this assumption reduces the Liouville equation to a hierarchy of low-
dimensional PDF equations (see, e.g., [20,113]). An example of such approximation
will be presented later in this chapter with an application to Lorenz-96 model.

3 Computational Cost

Consider a kinetic partial differential equation with n phase variables and m param-
eters, i.e., a total number of N = n+m variables. Suppose that we represent the
solution by using qz degrees of freedom in each phase variable and qb degrees of
freedom in each parameter. If we employ a tensor product discretization, the number
of degrees of freedom becomes qn

z ·qm
b and the computational cost grows exponen-

tially as O(q2n
z · qm

b ). Hereafter we compare the computational cost of the methods
we discussed in the previous sections. Table 2 summarizes the main results.

3.1 Sparse Grids

The computational complexity of sparse grids grows logarithmically with the num-
ber of degrees of freedom in each dimension, i.e., O(qz| log2(qz)|n−1). If we em-
ploy the multi-wavelet basis we mentioned before in the context of the discon-
tinuous Galerkin framework, then it can be shown that the computational com-
plexity is O((qz + 1)n2``n−1), where ` is the element level and qz is the poly-
nomial order in each element (see [43]). In the space of parameters, the sparse
grid collocation method yields 2l(m+ l)!/(m!l!) points, where l is the sparse grid
level and m is the number of parameters. Thus, if we consider sparse grid in
both phase and parametric space, the total computational cost can be estimated as
O(q2

z | log2(qz)|2n−2) ·∑`
l=0 2l(m+ l)!/(m!l!).
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3.2 Low-rank Tensor Approximation

The total number of degrees of freedom in a low-rank tensor decomposition grows
linearly with both n and m. For instance, we have R(nqz +mqb) in the canonical
tensor decomposition (6), and R2(nqz +mqb) in the tensor train approach (8). If
the tensor rank R turns out to be relatively small, then the tensor approximation
is far more efficient than full tensor product, sparse grid, or ANOVA approaches,
in terms of memory requirements as well as the computational cost. The classical
alternating direction algorithm at the basis of the canonical tensor decomposition
can be divided into two steps, i.e., the enrichment and the projection steps (see
Algorithm 1). The computational cost of the projection step can be neglected with
respect to the one of the enrichment step, as it reduces to solving a linear system of
rather small size (r× r). The enrichment step at tensor rank r requires O((rqz)

2 +
(rqz)

2) operations - provided we employ appropriate iterative linear solvers. If we
assume that the average number of iterations is nitr, and sum up the cost for r =
1, ...,R, the overall computational cost of canonical tensor decomposition can be
estimated as O

(
R3
(
nq2

z +mq2
b

))
· nitr. In the tensor train approach, the cost also

depends on the matrix rank S that comes from the procedure of HOSVD, and it
becomes O

(
R2S2nq2

z +R3S3nqz
)

[58].

3.3 ANOVA Decomposition

If we consider the ANOVA expansion or the BBGKY hierarchy, the computational
complexity has a factorial dependency on the dimensionality n+m and the interac-
tion orders of the variables [32]. In particular, the total number of degrees of freedom
for a fixed interaction order ` and assuming qb = qz is

`

∑
l=0

C(n+m, l,qz) where C(N, l,qz) = ql
z

N!
(N− l)!l!

. (26)

The computational cost of matrix-vector operations involving discretized variables
in each level is O

(
C(n+m, `,q2`

z )
)
. It is possible to combine the BBGKY tech-

nique with the PCM-ANOVA approach to improve the accuracy, since the interac-
tion order of the phase variables and the parameters, denoted as ` and `′, can be
controlled separately. In this case, the total number of degrees of freedom and the
corresponding computational cost become, (∑`

l=0 C(n, l,qz)) · (∑`′
l=0 C(m, l,qb)) and

O
(

C(n, `,q2`
z ) · (∑`′

l=0 C(m, l,qb))
)

, respectively.
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Degrees of freedom Computational Cost

Sparse grids O(qz| log(qz)|n−1) O
(
q2

z | log(qz)|2n−2
)

ANOVA or BBGKY
`

∑
s=0

qs
z

n!
(n− s)!s!

O
(

q2`
z

n!
(n− `)!`!

)
Canonical tensor decomposition qzRn O

(
q2

z R3n
)

Table 2 Number of degrees of freedom and computational cost of solving kinetic equations by
using different methods. Shown are results for sparse grid, ANOVA decomposition, and low-rank
canonical tensor decomposition. In the Table, n is the phase space dimension in the kinetic equation
assuming that the PDF solution is discretized with qz degrees of freedom in each phase variable.
Also, R is the tensor rank and ` is the interaction orders of the ANOVA expansion or the BBGKY
closure.

4 Applications

In this section, we present numerical examples to illustrate the performance and ac-
curacy of the algorithms we discussed in this chapter. Specifically, we study the al-
ternating Galerkin formulation (canonical tensor decomposition) of a kinetic model
describing stochastic advection of a scalar field. We also study the BBGKY hierar-
chy of the Lorentz-96 model evolving from a random initial state.

4.1 Stochastic Advection of Scalar Fields

Let us consider the following stochastic advection equations

∂u
∂ t

+

(
1+

m

∑
k=1

1
2k

sin(kt)ξk(ω)

)
∂u
∂x

= 0, (27)

∂u
∂ t

+
∂u
∂x

= sin(t)
m

∑
k=1

1
5(k+1)

sin((k+1)x)ξk(ω), (28)

where x ∈ [0,2π] and {ξ1, ...,ξm} are i.i.d. uniform random variables in [−1,1]. The
kinetic equations governing the joint probability density function of {ξ1, ...,ξm} and
the solution to (27) or (28) are, respectively,

∂ p
∂ t

+

(
1+

m

∑
k=1

1
2k

sin(kt)bk

)
∂ p
∂x

= 0, (29)

∂ p
∂ t

+
∂ p
∂x

=−

(
sin(t)

m

∑
k=1

1
5(k+1)

sin((k+1)x)bk

)
∂ p
∂a

, (30)
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where p = p(x, t,a,b), b = {b1, ...,bm} (see [112] for a derivation). Note that this
PDF depends on x, t, one phase variable a (corresponding to u(x, t)), and m parame-
ters b (corresponding to {ξ1, ...,ξm}). The analytical solutions to Eqs. (29) and (30)
can be obtained by using the method of characteristics [95]. They are both in the
form

p(x, t,a,b) = p0 (x−X(t,b),a−A(x, t,b),b) (31)

where

X(t,b) = t−
m

∑
k=1

(cos(kt)−1)bk

2k2 , A(x, t,b) = 0 (32)

in the case of equation (29) and

X (t,b) = t, A(x, t,b) =
m+1

∑
k=2

bk−1

10k

(
sin(kx− t)

k−1
− sin(kx+ t)

k+1
− 2sin(k(x− t))

(k−1)(k+1)

)
(33)

in the case of equation (30). Also, p0 (x,a,bbb) is the joint PDF of u(x, t0) and
{ξ1, ...,ξm}. In our simulations we take

p0(x,a,b) =
1
2

(
sin2(x)
2πσ1

exp
[
− (a−µ1)

2

2σ1

]
+

cos2(x)
2πσ2

exp
[
− (a−µ2)

2

2σ2

])
,

which has tensor rank R = 2. Non-separable initial conditions can be approximated
in the tensor format (5). Also, we consider different number of parameters in equa-
tions (29) and (30), i.e., m = 3, 13, 24, 54, 84, 114.

4.1.1 Finite-Dimensional Representations

Let us represent the joint probability density function (5) in terms of polynomial
basis functions as

pr
n(zn) =

qz

∑
k=1

pr
n,kφn,k(zn), (34)

where qz is the number of degrees of freedom in each variable. In particular, for
(29) and (30), we consider a spectral collocation method in which {φ1, j} and {φ2, j}
are trigonometric polynomials, while {φn, j}N

n=3 (basis elements for the space of pa-
rameters) are Lagrange interpolants at Gauss-Legendre-Lobatto points. The finite-
dimensional representation of the joint PDF admits the following canonical tensor
form

p =
R

∑
r=1

αdpr
1⊗·· ·⊗pr

N ,

where the vector
pr

n =
[
pr

n,1, · · · ,pr
n,qz

]
,

collects the (normalized) values of the solution at the collocation points. The fully
discrete Galerkin formulation of our kinetic equations takes the form
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Ap = f, (35)

where

A =
nA

∑
k=1

Ak
1⊗·· ·⊗Ak

N , f =
n f

∑
k=1

fk
1⊗·· ·⊗ fk

N , (36)

Ak
n[i, j] =

∫
φn,i(zn)Ak

n(zn)φn, j(zn)dzn, fk
n[i] =

∫
f k
n (zn)φn,i(zn)dzn. (37)

By using a Gauss quadrature rule to evaluate the integrals, we obtain system matri-
ces Ak

n that are either diagonal or coincide with the classical differentiation matrices
of spectral collocation methods [47]. For example, in the case of equation (29) we
have

A1
1[i, j] = wx[i]δi j, Ak

1[i, j] =
∆ t
2

wx[i]Dx[i, j], k = 2, ...,nA,

A1
2[i, j] = A2

2[i, j] = wz[i]δi j, Ak+2
2 [i, j] =

sin(ktn+1)

2k
wz[i]δi j, k = 1, ...,m,

Ak
3[i, j] = wb[i]δi j, k 6= 3, A3

3[i, j] = wb[i]qb[i]δi j, · · ·

where qb denotes the vector of collocation points, wx, wz, and wb are collocation
weights, Dx is the differentiation matrix, and δi j is the Kronecker delta function. In
an alternating direction setting, we aim at solving the system (35) in a greedy way,
by freezing all degrees of freedom except those representing the dimension n. This
yields a sequence of linear systems

BnpR
n = gn, (38)

where Bn is a block matrix with R× R blocks of size qz × qz, and gn is multi-
component vector. Specifically, the hv-th block of Bn and the h-th component of
gn are obtained as

Bhv
n =

nA

∑
k=1

(
N

∏
i 6=n

[
ph

i

]T
Ak

i pv
i

)
Ak

n, gh
n =

n f

∑
k=1

(
N

∏
i 6=n

[
ph

i

]T
fk
i

)
fk
n.

The solution vector
pR

n =
[
p1

n, ...,p
R
n
]T

is normalized as pr
n/‖pr

n‖ for all r = 1, ..,R and n = 1, ...,N. This operation yields
the coefficients ααα = (α1, ...,αR) as a solution to the linear systems

Dααα = d, (39)

where the entries of the matrix D and the vector d are, respectively

Dhv =
nA

∑
k=1

N

∏
i=1

[
ph

i

]T
Ak

i pv
i , dh =

n f

∑
k=1

N

∏
i=1

[
ph

i

]T
fk
i .
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Algorithm 1 Alternating least squares with canonical tensor decomposition.
Compute the tensor representation of the initial condition p(t0)
for t1 ≤ tk ≤ tnT do

Compute f by using p(tk−1)
Set R = 1
while

∥∥ApR(tk)− f
∥∥> ε do

Initialize
{

pR
1 (tk), ...,p

R
N(tk)

}
at random

while
∥∥ApR(tk)− f

∥∥ does not decrease do
Solve BnpR

n = gn (38) in each direction for 1≤ n≤ N
end while
Normalize the basis set and solve Dααα = d (39) to compute the coefficients ααα

Set R = R+1
end while

end for

The main steps of the computational scheme are summarized in Algorithm 1. We
also refer the reader to [21, 70, 108] for a convergence analysis of the alternating
direction algorithm.

The iterative procedure at each time step is terminated when the norm of the
residual is smaller than a tolerance, i.e., when ‖ApR− f‖ ≤ ε . This usually involves
the computation of an N-dimensional tensor norm, which can be expensive and com-
promise the computational efficiency of the whole algorithm. To avoid this problem,
we replace the condition ‖ApR− f‖ ≤ ε with the simpler convergence criterion

max

{∥∥p̃R
1 −pR

1

∥∥∥∥pR
1

∥∥ , ...,

∥∥p̃R
N−pR

N

∥∥∥∥pR
N

∥∥
}
≤ ε1, (40)

where
{

p̃R
1 , ..., p̃

R
N
}

denotes the solution at the previous iteration. This criterion in-
volves the computation of N vector norms instead of one N-dimensional tensor
norm.

4.1.2 Numerical Results: Low-rank Tensor Approximation

We compute the solution to the kinetic equations (29) and (30) by using Algorithm
1. The PDF solution is represented in the canonical tensor format as

p(x, t,a,b)'
R

∑
r=1

αr(t)pr
x(x, t)pr

a(a, t)P
r
1(b1, t) · · ·Pr

m(bm, t). (41)

We chose the degrees of freedom of the expansion to carefully balance the error
between the space and time discretization, as well as the truncation error due to the
finite rank R. In particular, x and a are discretized in terms of an interpolant with
collocation points qz = 50 in each variable, while the parametric dependence on b j
( j = 1, ..,m) is represented with Legendre polynomials of order qb = 7.
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Tensor Modes -Stochastic Advection Problem (29)
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Tensor Modes - Stochastic Advection Problem (30)
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Fig. 2 Tensor modes of the kinetic solution to the stochastic advection equations at t = 2 [20].
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Fig. 3 Spectra of the canonical tensor decomposition of the stochastic advection problem at t = 2.

In Figure 2 we plot the first few tensor modes pr(x,a, t)
.
= pr

x(x, t)pr
a(a, t) of the

solution to Eqs. (29) and (30) at time t = 2. Specifically, we considered m = 54
in (29) and m = 3 in (30). Note that the tensor modes we obtain from equation
(29), pr, are very similar to each other for r ≥ 2, while in the case of equation (30)
the modes are quite distinct, suggesting the presence of modal interactions and the
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Stochastic Advection Problem (29) Stochastic Advection Problem (30)
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Fig. 4 Relative L2 errors of the low-rank tensor approximation of the solution with respect to the
analytical solution (31). Shown are results for different number of random variables m in (27)-(28)
and different tensor ranks R. It is seen that the accuracy of the tensor method mainly depends on
the actual tensor rank rather than on the dimensionality [20].

need of a larger tensor rank to achieve a certain accuracy. This is also observed in
Figure 3, where we plot the normalization coefficients {α1, ...,αR}, which can be
interpreted as the spectrum of the tensor solution. The stochastic advection problem
with random forcing yields a stronger coupling between the tensor modes, i.e., a
slower spectral decay than the problem of random coefficient.

In Figure 4 we plot the error of the low-rank tensor approximation of the solution
versus the number of parameters m for different tensor rank R. As it is predicted from
the spectra shown in Figure 3, the overall relative error of the solution in the random
forcing case is larger than in the random coefficient case (see also Figure 5 for the
convergence with respect to R). This is due to the presence of the time-dependent
forcing term in Eq. (28), which injects additional energy in the system and activates
new modes. This yields a higher tensor rank for a prescribed level of accuracy. In
addition, the plots suggest that the accuracy of the low-rank tensor approximation
method depends primarily on the tensor rank rather than on the number of parame-
ters of the problem. The choice of the tensor format that yields the smallest possible
tensor rank for a specific problem is an open question. Recent studies suggest that
the answer is usually problem-dependent. For instance, Kormann [58] has recently
shown that a semi-Lagrangian solver for the Vlasov equation in tensor train format
achieves best performances if the phase variables are sorted as (v1, x1, x2, v2, x3, v3).

4.1.3 Comparison between Tensor Approximation and ANOVA

In this section we compare the accuracy and the computational cost of the low-rank
alternating Galerkin method with the ANOVA expansion technique to compute the
solution to Eqs. (29) and (30). The PCM-ANOVA representation of the solution is
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m = 3 m = 54
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Fig. 5 Relative L2 errors of the tensor solution and the ANOVA solution of level `= 2 with respect
to the analytical solution (31). Shown are results of the kinetic equation (29) at t = 0.5, t = 1 and
t = 3 for different tensor ranks R and dimensionality m.

p(x, t,a,b)' ∑
|K|≤`

pK(t,x,a)PK(bK). (42)

For ` = 2 (level 2) and m parameters, the expansion (42) has 1+m+m(m− 1)/2
terms.

In Figure 5 we compare the accuracy of the low-rank tensor approximation
and the PCM-ANOVA expansion in computing the solution to the kinetic equa-
tion (29). In particular, the convergence of the tensor solution with respect to R is
demonstrated. Note that the tensor solution attains the same level of accuracy as
the ANOVA decomposition with just five modes for t ≤ 1. Therefore the low-rank
tensor approximation is preferable over ANOVA especially when m≥ 54. However,
this is not true in the case of equation (30) due to its relatively large tensor ranks.
To overcome this problem, we developed an adaptive algorithm that sets the separa-
tion rank of the solution based on a prescribed target accuracy on the residual of the
kinetic equation, or other quantities related to it.

In Figure 6 (left) we plot the temporal dynamics of the tensor rank R(t) obtained
by setting a threshold on the spectral condition number defined as the ratio between
the smallest and the largest αi. Specifically, we increase R by one at t = t∗ whenever
the following condition is verified αR(t∗)/α1(t∗) > θ . For a small threshold θ , we
notice that R can increase to 20 and more at later times. This result reveals two
key aspects of efficient tensor algorithms in practical applications. It is essential to
develop a robust adaptive procedure that can identify the proper tensor rank on-the-
fly and an effective compression technique that can reduce the tensor rank in time.
This is critical especially when computing long term behavior of kinetic systems.

In Figure 6 (right) we plot the error of the adaptive tensor method and the level
2 ANOVA method versus time. It is seen that error in the tensor method is almost
independent of m, while the error of ANOVA increases with m. The accuracy can
be improved either by increasing the tensor rank (canonical tensor decomposition)
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Fig. 6 Comparison between the relative L2 errors of the adaptive tensor method and the ANOVA
method of level ` = 2. Results are for the kinetic equation (30) with threshold θ = 5 · 10−4. It is
seen that the error of the tensor solution is slightly independent of m, while the error of ANOVA
level 2 increases as we increase m.
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Fig. 7 Computational time of the tensor decomposition, ANOVA level 2, and sparse grid (SG)
level 3 with respect to the dimensionality m and the tensor rank R. The results are normalized with
respect to the computing time of ANOVA when m = 3.

or increasing the interaction order (ANOVA method). Before doing so, however,
one should carefully examine the additional computational cost incurred by each
method. For example, increasing the interaction order from two to three in the PCM-
ANOVA expansion would increase the number of collocation points from 70498 to
8578270 (case m= 54). In Figure 7 we compare the computational cost of canonical
tensor decomposition with different ranks, ANOVA of level two, and sparse grid of
level three in computing the solution to equation (30). It is seen that the tensor
method is the most efficient one, in particular for high dimensions and low tensor
rank, e.g., m≥ 24 and R≤ 8.
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4.2 The Lorenz-96 Model

The Lorenz-96 model is a continuous in time and discrete in space model often used
in atmospheric sciences to study fundamental issues related to forecasting and data
assimilation [51, 62]. The basic equations are

dxi

dt
= (xi+1− xi−2)xi−1− xi +F, i = 1, ...,n. (43)

Here we consider n = 40, F = 1, and assume that the initial state [x1(0), ...,x40(0)]
is jointly Gaussian with PDF

p0(z1, ...,z40) =

(
25
2π

)20 40

∏
i=1

exp

[
−25

2

(
zi−

i
40

)2
]
. (44)

Without an additional parametric space, the dimensionality of this system is n = 40.
The kinetic equation governing the joint PDF of the phase variables [x1(t), ...,x40(t)]
is

∂ p(z, t)
∂ t

=−
40

∑
i=1

∂

∂ zi
[((zi+1− zi−2)zi−1− zi +F) p(z, t)] , z ∈ R40. (45)

Such hyperbolic conservation law cannot be obviously solved in a classical tensor
product representation because of high-dimensionality and possible lack of regular-
ity (for F > 10) related to the fractal structure of the attractor [51]. Thus, we are led
to look for reduced-order PDF equations.

4.2.1 Truncation of the BBGKY Hierarchy

In this section we illustrate how to compute low order probability density function
equations by truncations of the BBGKY hierarchy. To this end, consider the dynam-
ical system

dyi

dt
= Gi(y, t),

where

Gi(y, t) = gii(yi, t)+
N

∑
k=1
k 6=i

gik(yi,yk, t).

With such velocity field Gi(y, t) we can calculate the integrals at the right hand side
of the one-point PDF equation (24) exactly as

∂ pi

∂ t
=− ∂

∂ zi

[
gii(zi, t)pi +

N

∑
k 6=i

∫
gik(zi,zk, t)pikdzk

]
, (46)
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where pi = p(zi, t) and pik = p(zi,zk, t). Similarly, the two-point PDF equations (25)
can be approximated as

∂ pi j

∂ t
=− ∂

∂ zi

[
(gii(zi, t)+gi j(zi,z j, t)) pi j +

(
N

∑
k 6=i, j

∫
gik(zi,zk, t)pikdzk

)
p j

]

− ∂

∂ z j

[
(g j j(z j, t)+g ji(z j,zi, t)) pi j +

(
N

∑
k 6=i, j

∫
g jk(z j,zk, t)p jkdzk

)
pi

]
,

(47)

where we discarded all contributions from the three-point PDFs and the two-point
PDFs except the ones interacting with the i-th variable. A variance-based sensitivity
analysis in terms of Sobol indices [98, 104, 111] can be performed to identify the
system variables with strong correlations. This allows us to determine whether it is
necessary to add the other two-points correlations or the three-points PDF equations
for a certain triple {xk(t),xi(t),x j(t)}, and to further determine the equation for a
general form of Gi.

In the specific case of the Lorenz-96 system, we can write equation (46) as

∂ pi

∂ t
=− ∂

∂ zi

[
(〈zi+1〉−〈zi−2〉)〈zi−1〉i−1|i− (zi−F)pi

]
, (48)

where 〈 f (z)〉i| j
.
=
∫

f (z)pi j(zi,z j, t)dzi. In order to close such a system within the
level of one-point PDFs, 〈zi−1〉i−1|i could be replaced, e.g., by 〈zi−1〉 pi(zi, t). Simi-
larly, equation (47) can be written for the two adjacent nodes as

∂ pi i+1

∂ t
=− ∂

∂ zi

[
zi+1

〈
zi−1

〉
i−1|i

pi+1 −
〈
zi−2

〉〈
zi−1

〉
i−1|i

pi+1 − (zi −F )pi i+1

]
− ∂

∂ zi+1

[〈
zi+2

〉
i+2|i+1

zi pi −
〈
zi−1

〉
zi pi i+1 − (zi+1 −F) pi i+1

]
. (49)

By adding the two-points closure of one node apart, i.e., pi−1 i+1(zi−1 ,zi+1 , t), the
quantity

〈
zi−2

〉〈
zi−1

〉
i−1|i pi+1 in the first row and

〈
zi−1

〉
zi pi i+1 in the second row

can be substituted by 〈zi−2〉i−2|i 〈zi−1〉i−1|i+1 and 〈zi−1〉i−1|i+1 zi pi , respectively. In
Figure 8, we compare the mean and the standard deviation of the solution to (43)
as computed by the one- and two-points BBGKY closures (Eqs. (48) and (49),
respectively) and a Monte Carlo simulation with 50000 solution samples. It is seen
that the mean of both the one-point and the two-points BBGKY closures basically
coincide with the Monte Carlo results. On the other hand, the error in standard
deviation is slightly different, and it can be improved in the two-points BBGKY
closure (Figure 9).
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Fig. 8 Mean (a, b) and standard deviation (c, d) of the Lorenz-96 system computed by the one-
point (a) and two-points (c) BBGKY closure compared to the Monte-Carlo simulation (b, d) [20].

5 Summary

In this chapter we reviewed state-of-the-art algorithms to compute the numerical
solution of high-dimensional kinetic equations. The algorithms are based on low-
rank tensor approximation, sparse grids, and ANOVA decomposition. A common
feature of these methods is that they allow us to reduce the problem of computing
the solution to a high-dimensional PDE to a sequence of low-dimensional problems.
The range of applicability of the algorithms is sketched in Figure 1 as a function
of the number of phase variables and the number of parameters appearing in the
kinetic equation. The computational complexity ranges from logarithmic (sparse
grids) to linear (canonical tensor decomposition) with respect to the dimension of
the system. Further extensions of the proposed algorithms can be addressed along
different directions. For example, adaptive procedures capable of resolving different
phase variables with different accuracy may allow applications to kinetic systems
with non-smooth solutions and scaling to extremely high-dimensions. In the context
of low-rank tensor approximation methods [20, 27, 58], a fundamental question is
the development of effective techniques for rank reduction [4,94]. This is especially
challenging for hyperbolic PDEs, since such equations can yield a slow convergence
rate when solved with canonical tensor decompositions [20,79]. Future work should
address the development of adaptive algorithms for the construction of controlled
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Fig. 9 The absolute error of the mean (a) and standard deviation (c, d) of the Lorenz-96 system by
using the BBGKY closure compared to the Monte-Carlo simulation in log-scale. In (c) and (d), the
results are computed by the one- and two-points BBGKY closure, respectively, and the L1 error is
shown in (b).

low-rank approximations and an adaptive selection of separation ranks and tensor
formats.
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