
University of California Santa Cruz
Data-Driven Computational Optimal Control for Uncertain Nonlinear Systems

Prof. Daniele Venturi and Prof. Qi Gong

PhD Students: Tenavi Nakamura-Zimmerer, Abram Rogers, Catherine Brennan,
and Panos Lambrianides.

DARPA Lagrange Program

Quarterly Progress Report (Q2)
July-September 2018

Contents

1 Executive summary 1

2 Project report 2
2.1 Parallel C++ class to compute hierarchical tensor formats 2

2.1.1 Brief overview of hierarchical tensor methods . 2
2.1.2 The C++ class . 3
2.1.3 Matricizations . 4
2.1.4 Brief description of the HT algorithm . 5
2.1.5 Numerical results: serial C++ code . 6
2.1.6 Parallelization of the HTucker C++ class . 6
2.1.7 Numerical results: parallel C++ code . 9
2.1.8 Application to a 4D Liouville equation . 10

2.2 Data-driven methods to compute PDFs and flow maps . 11
2.2.1 Data-driven approximation of probability density functions using deep neural nets . 12
2.2.2 Brief description of the machine learning algorithms we implemented 15
2.2.3 Generating training data . 15
2.2.4 Numerical results . 15
2.2.5 Prediction of the full dynamics of the joint PDF with feed-forward neural nets 19
2.2.6 Prediction of the full dynamics of the joint PDF with physics-informed neural nets

(PINN) . 21
2.2.7 Refining physics-informed deep neural networks 24
2.2.8 Application to the Van der Pol oscillator . 30
2.2.9 Flow map prediction with deep neural networks . 34

2.3 Numerical methods to solve data-driven PDF equations . 44
2.3.1 Estimating conditional expectations from data: smoothing splines and moving aver-

ages . 50
2.3.2 Neural network estimation of conditional expectations 51
2.3.3 Numerical results . 54

2.4 Applications of data-driven optimal control strategies . 55
2.4.1 Swarm of attacking/defending agents . 55
2.4.2 Disease propagation on random networks . 59

1 Executive summary

In this proposal, we address a very important research area in computational mathematics, namely the de-
sign and synthesis of optimal control strategies for high-dimensional stochastic dynamical systems. Such
systems may be classical nonlinear systems evolving from random initial states, or systems driven by ran-
dom parameters or processes. The first objective is to provide a validated new computational capability for
optimal control of stochastic systems which will be achieved at orders of magnitude more efficiently than
current methods based on spectral collocation or random sampling. To accomplish this goal, we will de-
velop a new data-driven optimal control framework based on probability density function (PDF) equations.
The new framework is built upon high-order numerical tensor methods, with no specific requirements on
the structure of the continuous dynamics, cost function, or the type of uncertainties. The 18 months research
plan is multidisciplinary and it involves multiple fields such as optimal control, large-scale optimization,
and uncertainty quantification. It consists of theoretical and numerical developments, as well as a general
software framework that will implement the proposed algorithms. The proposed research work will have
a significant and broad impact in a wide range of engineering applications such as autonomous systems,
environmental defense, and control of random networks.

Figure 1: Sketch of the proposed data-driven optimal control architecture. Red dashed arrows indicate the
flow of existing methods. The proposed optimal control architecture emphasizes the role of probability
density function equations instead of nonlinear dynamics in the control loop. Such paradigm shift opens the
possibility to integrate advanced numerical methods for high-dimensional PDF equations with optimization
algorithms to mitigate the effects of uncertainty in high-dimensional nonlinear control systems.

1

Figure 2: Research tasks.

2 Project report

In this section we discuss in detail the research activities and results we obtained in Q1 and Q2. The report
is organized on a task-by-task basis.

2.1 Parallel C++ class to compute hierarchical tensor formats

As we promised in the quarter-by-quarter breakdown of the research activities we proposed, in Q1 we
initiated the development of a parallel C++ class to compute hierarchical Tucker tensor formats. As of
today we have available a working serial version of the C++ code, which we tested against the htucker
Matlab softare developed at École Polytechnique Fédérale de Lausanne (EPFL - Switzerland), and available
online at https://anchp.epfl.ch/htucker. The numerical results of such tests are summerized
in section 2.1.5).

2.1.1 Brief overview of hierarchical tensor methods

Hierarchical tensor methods were originally introduced in [11] to mitigate the dimensionality problem and
memory requirements in the numerical representation of high-dimensional functions. A key idea is to per-
form a sequence of Schmidt decompositions [24] (multivariate SVDs [8]) until the approximation problem
is reduced to a product of one-dimensional functions/vectors. To illustrate the method in a simple way, con-
sider a five-dimensional function f(x1, . . . , x5). In a hierarchical Tucker tensor representation f is written
as

f(x1, . . . , x5) =
r∑

i1,··· ,i5=1

C[i1, . . . , i5]f1
i1(x1)f2

i2(x2)f3
i3(x3)f4

i4(x4)f5
i5(x5). (1)

2

Figure 3: Graph representation of the hierarchical Tucker decomposition of a five-dimensional tensor.

where the 5-dimensional core tensor C[i1, . . . , i5] can be factored as a product of at most three-dimensional
tensors. This is true in an arbitrary number of dimensions. The tensor components fkik(xk) and the factors
of the core tensor can be computed by employing hierarchical SVDs [8, 15, 17] of suitable tensor matriciza-
tions, which we will describe in detail in section 2.1.3. Hierarchical tensor expansions can be conveniently
visualized by graphs (see Figure 3). This is done by adopting the following standard rules: i) a node in a
graph represents a tensor in as many variables as the number of the edges connected to it, ii) connecting
two tensors by an edge represents a tensor contraction over a certain index. The 5-dimensional function (1)
may be evaluated at grid points, e.g., defined within the 5-dimensional standardized hyper-cube [0, 1]5. This
basically converts f(x1, . . . , x5) into a 5-dimensional array (tensor), which we formally write as

A[i1, . . . , i5] = f(xi11 , . . . , x
i5
5), (xi11 , . . . , x

i5
5) ∈ [0, 1]5 ∀ij . (2)

The basic problem we aim at overcoming with hierarchical tensor methods is the storage requirements of full
tensor representations such as (2). To understand how serious such problem is, consider that in dimension
5 if we use 1000 evaluation nodes in each dimension then we need to store 10005 = 1015 floating point
numbers (in double precision), which requires approximately 8000 terabytes of memory space. From an
algorithmic viewpoint, hierarchical tensor methods can be seen as linear algebra techniques (multivariate
SVD) to “compress” multivariate arrays of arbitrary dimension into arrays of manageable size. Due to the
great practical potential of being able to compress (big) data, we find it a high priority to develop a high
performance C++ code to implement such algorithms.

2.1.2 The C++ class

In Q1 we studied how the algebraic theory of tensors [11] can be effectively implemented in a C++ class.
There are multiple perspectives with which one may view a tensor. A particularly effective one is to view
tensors as multi-linear maps from sets of integers into the reals, i.e.,

A[i1, i2, . . . , id] ∈ R, ik ∈ Ik ∀k ∈ 1, . . . , d.

Here, A[i1, . . . , id] may correspond to the discretization of a multivariate function on a grid (see, e.g.,
equation (2)). The sets Ik are called index sets. For finite-cardinality index sets, we let each i ∈ Ik
range from 0 to #(Ik) − 1 (where # denotes the cardinality) to match C++ indexing conventions. A
multidimensional array may be stored in C++ in different ways. A conventional approach is to allocate arrays
of memory addresses (called “pointer pointers”). Instead, we match the convention given by LAPACK: we
allocate a single array of floating point numbers and then manage indexing through the use of “column
major form” index weights. This allows lower level control of the memory and makes for more time spent
computing and less time spent allocating and de-allocating memory.

3

Remark 2.1 A multi-index set I1 × I2 × . . . Id is also an index set. The elements of this set are tuples
of integers. Since indexed sets of real numbers form a vector space, the notion of tensor described above
satisfies the vector space axioms. i.e., tensors are vectors. Basic vector arithmetic operations one might do
in Matlab or Numpy are now implemented in the tensor class.

Remark 2.2 (Matlab-like C++ environment) We used the memory management written for the tensor
class to implement a column major form matrix class. Moreover, since the data is stored column major,
we can now use LAPACK to add in common Matlab-like commands. Some of those included are QR
factorization, singular value decomposition (SVD), and matrix multiplication. Combined with operator
overloading, this implementation of a C++ matrix object allows for programming in a Matlab-like way,
since memory management is taken care of entirely within constructors and destructors. Additional useful
routines added in are the Kronecker and Hadamard products, which are not available in LAPACK as of the
writing of this report.

2.1.3 Matricizations

Matricization is the process of taking a tensor, and generating a matrix with the same entries. To illustrate
this, consider the following steps:

1. Start with a full tensor with an entry like so

A[i1, i2, . . . , id]

2. Group the indexes by permuting them around so that

[i1, i2, . . . , id] 7→
[
[r1, r2, . . . , rm], [c1, c2, . . . , cd−m]

]
Now we let assign each [r1, r2, . . . , rm] a natural number, say r ∈ N. Do the same for [c1, c2, . . . , cd−m],
getting the index c ∈ N.

What we have done is giving each element of the multi-index an order pair of integers. Pairs of integers
indexing a set of real numbers is called a matrix. Let’s call that matrix B. We have described a map from a
tensor to a matrix:

A[i1, i2, . . . , id] 7→ B[r, c].

The choice of permutation gives us the type of matricization we have done. For example, suppose we have
a full tensor with entries A[i1, i2, i3, i4]. If we want to matricize on indexes 1 and 3, then we permute
A[i1, i2, i3, i4] 7→ B

[
[i1, i3], [i2, i4]

]
, then we count all of the indexes one at a time, in the first two indexes

and second two indexes independently. This gives us the matrix B[r, c]. Matricization is denoted by the
subset of row index labels in a superscript. So in this case, we discussed the A(13) matricization. This is
also called the (1, 3)-mode matricization.

Remark 2.3 Matricization requires addressing every element of a tensor and allocating multiple arrays
to define indexing, floating point storage, and the maximal bounds of an index. Doing this many times
can get computationally very expensive. Matlab/Octave get around this by using the built in command
reshape(). From the Octave documentation on this command, this calls the built in Fortran command
RESHAPE(), which is a very low level implementation of array memory shape manipulation. In order to
beat scaling performance of Matlab and Octave on a desktop computer, it is required to implement a highly
efficient array reshaping function for row column form multi-dimensional arrays. An alternative may be to
implement a Fortran call into C++, like LAPACK.

4

2.1.4 Brief description of the HT algorithm

Our goal is to take a full tensor, say A[i1, . . . , id], and then generate a tree at each node containing smaller
tensors which can be used to compute individual entries ofA. The tree has one leaf for each of the 1, 2, . . . , d
indexes of A (see Figure 3). Each leaf contains a set of basis vectors corresponding to the 1, 2, . . . , 5 mode
matricizations. The internal (non-root and non-leaf) nodes contain a 3-tensor with projection information
for generating a basis corresponding to that node’s matricization. So if node has children 1 and 2, then the 3-
tensor contains coordinates for generating a basis corresponding to the (1, 2) mode matricization. The exact
formula is given in [8] and it is hereafter summarized. Let Bt denote the 3-tensor at node t and Us1, Us2
be the matrices containing the basis vectors of the children of node t. Then the i column of the basis Ut is
given by:

Ut[: , i] =
∑
j

∑
l

Bt[i, j, l] · (Us1[: , j]⊗ Us2[: , l]) ,

where the operator : has the Matlab/Octave meaning of “all entries in this index” and ⊗ is the Kronecker
matrix product. Then (see [8]),

B[i, j, k] =

〈
Ut[: , i],

(
Us1[: , j]⊗ Us2[: , l]

)〉
.

All bases are generated by taking the singular value decomposition of a matricization of the full tensor A
along the indexes which correspond to a particular node. The orthogonality of the bases from a SVD is what
allows us to use relatively simple projections to generate all reduced-order tensors on the tree. To adjust the
multi-linear rank of a HT tensor, we simply take fewer left singular vectors to generate the matrices Ut at
the leaves of the tree. Lastly, we discuss the root node (white node in Figure 3). This node is similar to the
internal nodes, but instead it is only a matrix (2-Tensor), rather than a 3-Tensor. This is because there is no
parent node of the root. The projection for the Bt array at the root is the same as the one given above, but
the i index has a maximum index of 0, making the expression B[0, j, k]. In addition, Ut is a single column
vector listing every entry of the full tensor A.

Remark 2.4 Described here is the “root-to-leaves” method for computing a HT decomposition. There is a
much faster “leaves-to-root” approach which does successive products onto a “core tensor”. It has the same
error bounds (see Theorem 2.1) as the approach we just discussed. In particular, the following theorem holds
for both HT tensor approximation algorithms.

Theorem 2.1 (HT approximation error [8]). Let A be a real valued tensor of dimension d. Let k be the
max prescribed rank on each node of the tree and ε > 0. If there exists a tensor Abest of the same rank and
||A−Abest|| ≤ ε, then the singular values of A(t), denoted by σi for each node t can be estimated by∑

i>k

σ2
i ≤ ε2.

On the other hand, if the singular values fulfill the theoretical bound
∑
i>k

σ2
i ≤ ε2/(2d − 3), then the

truncation yields a HT tensor AH such that ||A − AH|| ≤ ε. Thus, the overall accuracy depends on how
many singular values we keep in the matrix representation at the leaves. If we drop none, then we obtain an
exact representation of the full tensor in the HT form.

5

(a) (b)

Figure 4: Sine function (3) in 2D (a) and 3D (b). In (b) we show the level sets (iso-surfaces) corresponding
to g = 0 (green), g = 0.2 (magenta), g = 0.4 (blue), g = 0.6 (purple) and g = 0.8 (light green).

2.1.5 Numerical results: serial C++ code

As a first test for the C++ code we developed, we generated a tensor which has entries given by sampling
the following scalar function on a uniform grid in the unit hyper-cube [0, 1]d.

g(x1, x2, . . . , xd) = sin

(
d∑
i=1

xi

)
. (3)

It was shown in [18] that g(x1, x2, . . . , xd) can be written as

g(x1, ..., xd) =
d∑
j=1

sin(xj)
d∏
i=1
i 6=j

sin(xi + χi − χj)
sin(χi − χj)

, (4)

for any d-tuple of distinct numbers {χ1, . . . , χd}. Therefore, in principle, g(x1, x2, . . . , xd) can be written
as a fully diagonal HT decomposition with separation rank equal to r = d. In Figure 4 we plot the function
(3) in two and three dimensions (iso-surfaces).

Next, we perform an analysis of the performance of the HT leaves-to-root decomposition algorithm. In
particular, we consider d-dimensional functions of the form (3) and compute the HT decomposition by using
both the htucker Matlab software available online at https://anchp.epfl.ch/htucker) and our
newly developed C++ code. Our results are summarized in Figure 5. It is seen that the two implementations
yield nearly identical error plots, differing only on the order of machine accuracy. This suggests that our
C++ code is mathematically correct, and relatively efficient. In fact, as easily seen from the plots of Figure
5, our code outperforms the Matlab code by 10 times in speed for small dimensions. However, as d increases
and we need to perfom more costly matricizations, the built-in Matlab reshape() function outperforms
our current implentation of the C++ matricization. We are currently investigating possible approaches to
overcome this difficulty as discussed above in Remark 2.3.

2.1.6 Parallelization of the HTucker C++ class

To parallelize the algebraic routines of tensor arithmetic we used both OpenMP and MPI communication
protocols. This allowed us to store each node of the HT tree sketched in Figure 3 in its own compute

6

Figure 5: Hierarchical HT decomposition of the sine function (3). Comparison between the htucker
Matlab software available online at https://anchp.epfl.ch/htucker and the serial version our
newly developed C++ code in terms of accuracy and execution time.

node as in Figure 6. OpenMP is used so that whatever cores are active on each compute node can perform
parallelized linear algebra operations through the use of LAPACK and ScaLAPACK.

Distributed memory implementation

It is natural to attempt to place one tensor or matrix in each compute node of a parallel computer (see Figure
6). This is the approach discussed in the recent paper [9]. In this section we will explicitly state how such a
distributed memory implementation can be done using MPI. By distributed memory computer, here we mean
a computer which has multiple instances of the same program running. Each instance has an ID number and
can send or receive data from any other instance. We will be using these IDs to define what each node does
in computing an HTucker decomposition, and how nodes communicate when performing computations on
an HTucker tensor. A standard tree data structure consists of nodes containing some data and which point
to 2 children nodes, or NULL if no children. In the context of a distributed memory machine, we replace
the concept of “pointing to do different memory locations” with storing a set of integers indicating which
compute nodes refer to the left child, right child and parent. To illustrate the concept, consider the simple

7

Figure 6: Parallel implementation of the HTucker C++ class. Dimension tree corresponding to a 4-tensor.

example shown in Figure 6 of a tree corresponding to a 4-tensor. Iterating from left to right in each layer, we
correspond an index to each tree node. Each node contains a data structure with 3 integers and the relevant
tensor objects for HTucker decomposition. For example, node 1 contains a parent ID of 0, a left child ID
of 3, and a right child ID of 4. For the root, the parent ID is set to 0, which is the same as its own ID.
For the leaves, the children ID numbers are set to -1. An algorithm for assigning unique ID numbers for
all nodes for arbitrary dimension trees using the scheme outlined here is implemented as a dependency for
the HTuckerMPI C++ object. The algorithm for computing the HTucker decomposition on a distributed
tree is largely the same as the method we described in Q1. The difference lies in how the data is stored
and transferred in the computer. Any time where a matrix, tensor, or some related data (e.g. number of
components in an array) is required from a parent/child node, an MPI message is passed. Using this, we can
initialize a tensor on node 0, and then send data to the rest of the tree. To this effect, we compute all the
required matricizations simultaneously. Then SVDs are all done simultaneously and the left singular vectors
are sent to the respective parent nodes. As for how this is accomplished in C++, we store an HTuckerMPI
object on each compute node. Each object contains either the root matrix, a transfer tensor, or the leaf
basis matrices. Each node using this object as an interface to communicate with all other nodes on the
tree. Addition is accomplished by concatenating tensors as is described by the Matlab HTucker manual.
The only operations required at the time taken to copy two summands into a new HTuckerMPI object.
Truncation of an HTucker tensor to another HTucker tensor is similar to going from full tensor to HTucker
(see [15]). First, we generate a set of matrices called Gramians for each node which are roughly equivalent
to the matricizations. Then we use these matrices to generate new matrices containing left singular vectors.
Finally we only the child frames in similar manner as stated in (2.1.3). As mentioned above, OpenMP is also
used in the parallelization process. Each compute node is also given the capability to compute with shared
memory in parallel. This is to say that we can take advantage of the parallelizations used in LAPACK for
computing, e.g., the SVD and the QR factorization. On the workstation used in the tests below, we have a
Intel i9-7980XE with 18 CPU cores with Hyper-Threading of 2 processes per core. So our Linux operating
system registers a total of 36 ”logical cores.” If we are to use the 4 dimensional tensor example above, then
we need to used 7 MPI compute nodes (one for each tree node). This number tells us how many cores we
can allocate to parallelizing with OpenMP. The allocation is simple, diving 36 by 7 we have maximally 5
OpenMP processes per MPI node and then one left over.

8

(a) (b)

Figure 7: Performance of the parallel HTucker C++ class with “root-to-leaves” [15] truncation in computing
the tensor decomposition of the function (5). Here we use 7 MPI nodes, with up to 5 OpenMP threads in
each node.

2.1.7 Numerical results: parallel C++ code

We consider the following non-separable function to study parallel versus serial performance of the C++
code we developed

g(x1, x2, x3, x4) = exp

[
sin(5x1x2) cos(5x3)

1 + cos(10x1x4)2

]
. (5)

We sample g on a 60 × 60 × 60 × 60 grid in [0, 1]4. This yields a 4D numerical tensor with 12.36 million
entries, which requires 103.68 Mb of storage if we use double precision floating point numbers. We tested
accuracy and computational time for several different separation ranks. We start at rank 1 and then increase
the rank by 10 every iteration, until 101. Our results are summarized in Figure 7. In particular, Figure
7(a) shows that the maximum pointwise error decays more or less exponentially fast with the separation
rank r. Such error decay, is not obviously affected by the number or OpenMP threads within each compute
node. In Figure 7(b) it is seen that the parallel HTucker code indeed outperforms the serial version by a
significant margin. Specifically, we can see a reduction by 1/2 in execution time. This is not the full 1/7
one would expect since a large overhead is introduced by telling different processing nodes to send data back
and forth. We are currently working on optimizing (minimize) communication between the compute nodes.
Even so, with this overhead we make significant gains in speed. Also, the parallel code is more suited to
larger and larger problems. If the code spends more time computing on independent cores than passing data
between cores, then we see better performance. For this particular tensor, the two implementations scale
constant with rank. This is because the last step, which actually depends on rank, is the series of projections
explained in section 2.1.3 . However, this step takes far less time than computing all of the matricizations
and singular value decompositions, which are not currently programmed to scale with rank. Observing the
performance of the parallel code, we also see that adding more cores per compute node has a significant
impact on compute time, going down from around 60 seconds to 50 seconds.

9

2.1.8 Application to a 4D Liouville equation

Consider the following four-dimensional initial/boundary value problem for the Liouville equation on the
periodic cube D = [−1, 1]4

∂p(t,x)

∂t
+G · ∇p(t,x) = 0 t ≥ 0, x ∈ D,

p(0,x) = p0(x) =
1

(4π2σ4)
exp

[
− x2

1 + x2
2 + x2

3 + x2
4

2σ2

]
, σ = 2.

(6)

By using the method of characteristics, it is straightforward to obtain the following exact solution (with
constantG)

p(t,x) = p0(x−Gt). (7)

Taking partial derivatives of p(t,x) in a discrete form is done through the use of a “µ-mode” product ◦µ,
which is performed by taking the µ-mode matricization, applying the differentiation matrix to the resulting
operator. For example, the partial derivative in x1 is:

∂p

∂x1

∣∣∣∣
(t,[xi1,x

j
2,x

k
3 ,x

w
4])

≈ (D ◦1 P (t))[i, j, k, l], (8)

where we denoted byD the one-dimensional pseudospectral (Fourier) differentiation matrix, and with P (t)
the full tensor (with all indexes) at time t. The semi-discrete form of the initial/boundary value problem 6
can be compactly written in an HTucker form as

dP (t)

dt
= −

4∑
k=1

GkD ◦k P (t). (9)

To integrate the ODE system (9) in time, we use the the second-order explicit Adams-Bashforth scheme

P (tn+1) = P (tn)− ∆t

2

4∑
k=1

GkD ◦k (3P (tn)− P (tn−1)) . (10)

By the properties of pseudo-spectral methods, we expect that accuracy depends on differentiability in space.
In particular, since the initial condition is infinitely differentiable and numerically zero on the boundary for
sufficiently small σ, we expect exponential convergence in space. As for using HTucker to solve this prob-
lem, it can be shown that multiplying a matrix into the µ leaf in the HTucker decomposition is equivalent to
taking the µ-mode product with the full tensor; summing is simply concatenation; and scalar multiplication
can be accomplished by scaling the root node’s matrix by a real number. Since the data stored at each step
grows with concatenation if we do not truncate, we truncate to a given max rank at the end of every iteration.
In Figure 8 we plot a few sections of the solution to (6) in the x1x2-plane at different times. The rank of the
HTucker decomposition is chosen to be 1, 2, and 3. Note that since a the Gaussian initial condition is fully
separable, it can be represented exactly with a rank 1 tensor format. Thus, raising rank does not improve
accuracy, but increases computation time since more data copying for each addition and also more vectors
operations. We see all this in Figure 9, where we plot the execution time needed to advect the solution for
106 time steps (one cycle) This number was chosen because after this many iterations the maximum point-
wise error is of order O(10−4), small enough to be a fair estimate of the solution. Next, we study scaling
with with the number of grid points, to see how the different algorithms handle growing problem size. In
Figure 9 we see the execution time of the serial C++ algorithms grows roughly with power 1/2. On the
other hand, the execution time of HTucker grows much slower. This is because essentially we don’t need to

10

Figure 8: Solution of the initial/boundary value problem (6). Shown are sections of the solution in the
x1x2-plane at different times. Here x3 and x4 are both set equal to 2t.

compute any of the additions, and the modal products need only to be applied to the leaves. We see that the
computing time levels off entirely for a rank 1 representation. For more complicated problems, the optimal
rank in general depends on time, suggesting that the solution may increase or reduce its separability as time
integration proceeds. In this case, we can adaptively compute such optimal rank on-the-fly based on fast
error estimators.

2.2 Data-driven methods to compute PDFs and flow maps

Consider the n-dimensional system of autonomous first-order ordinary differential equations,

ẋ = G(x(t)), x(0) = x0 ∼ p0(x), (11)

where p0(x) is a given probability density function (PDF). For any fixed initial condition, the solution is
determined by the flow map

x = Φ(x0, t), (12)

which is a function of both the initial condition x0 and time t. It can be shown [2] that the forward flow map
satisfies the flow map equation

∂Φ(x0, t)

∂t
− (G(x0) · ∇)Φ(x0, t) = 0 Φ(x0, 0) = x0. (13)

Similarly, the inverse flow map satisfies the initial value problem

∂Φ0(x, t)

∂t
+ (G(x) · ∇)Φ0(x, t) = 0, Φ0(x, 0) = x. (14)

11

Figure 9: Computational time needed to advect the solution back to its initial position (reached at t = 1)
versus the number of collocation point in each variable xi. To get from t = 0 to t = 1 we perform 106 time
steps.

When considering uncertainty, the PDF of the state vector x at time t can be found by solving the Liouville
equation

∂p(x, t)

∂t
+∇ · [p(x, t)G(x)] = 0. (15)

The analytical solution to (15) can be expressed with the method of characteristics as

p(x, t) = p0(Φ0(x, t)) exp

[
−
∫ t

0
∇ ·G(Φ(x0, τ))dτ

]
, (16)

where Φ0(x, t) is the inverse flow map [7] satisfying (14). From (16), we see that if the system is volume-
preserving, i.e., if∇ ·G = 0 then we have

p(x, t) = p0(Φ0(x, t)). (17)

This means, in particular, that the level sets of p0 are preserved throughout the dynamics. This allows us to
track the support of the joint PDF p(x, t) by propagating forward in time the almost-zero level set.

Remark 2.5 For a large class of control systems, e.g., control affine systems, it is possible to design state
feedback control to make the system (11) divergence-free. Such property can be explored to design optimal
closed-loop controls that leverage divergence-free dynamics.

2.2.1 Data-driven approximation of probability density functions using deep neural nets

Machine learning offers an efficient way to compute data-driven solutions of partial differential equations
[23]. In Q1 we implemented several algorithms that leverage deep neural networks (designed in TensorFlow
[1]) to approximate the PDF of prototype low-dimensional dynamical systems. The algorithms are built
upon two different types of neural nets

• Data-driven neural nets;

• Physics-informed data-driven neural nets (PINN).

12

Figure 10: Architecture of a feed-forward neural net for approximating p(x, t) by a composition of func-
tions: p̂(x, t) = gM ◦ gM−1 ◦ . . . g1(x, t). Each layer (function) gj consists of a set of parameters
θj = {Wj , bj}, weights and biases on the outputs of the previous layer gj−1, along with a nonlinear
activation function, e.g., the sigmoid function or the hyperbolic tangent. For example, g2 ◦ g1(x, t) =
tanh[W2 · g1(x, t) + b2] = tanh[W2 · tanh(W1 · [x, t] + b1) + b2]. The parameters are optimized during
model training so that the output p̂

(
x(i), t(i)

)
is as close as possible, in some norm, to the training data

p
(
x(i), t(i)

)
.

In the first case, the PDF of the system is estimated by training the neural net sketched in Figure 10 entirely
with sample paths1 of (11). In practice, we minimize a cost function of the form

MSEdata(θ1, ...,θM , t) =
1

Nd

Nd∑
k=1

[
log
(
p(x(k), t)

)
− log

(
p̂(x(k), t)

)]2
, (18)

where p(x(k), t) is obtained by solving (15) with the method of characteristics, p̂(x(k), t) is the neural net
representation

p̂(x, t) = gM ◦ gM−1 ◦ . . . g1(x, t) (19)

evaluated at x = x(k), N is the number of sample paths, and θj = {Wj , bj} are the free parameters in the
j-th activation function. In (18), x(k) = Φ(x

(k)
0 , t) denotes the the position of the particle x(k)

0 at time t,
which can be easily determined by integrating system (11) from the initial condition x(k)

0 .
In the second case, i.e., in the physics-informed data-driven neural net (PINN) setting, we augment the

cost function with a penalty term that represents the magnitude of the residual we obtain when we substitute
the neural net representation (19) into the Liouville equation (15), i.e.,

R(x, t) =
∂p̂(x, t)

∂t
+∇ · (G(x)p̂(x, t)) . (20)

In this case, the cost functional we consider is

MSEPINN(θ1, ...,θM , t) = MSEdata(θ1, ...,θM , t) + µMSEL(θ1, ...,θM , t), (21)

1Training the neural net as shown in Figure 10 can be done at a specific time t, e.g., at final time or at an entire sequence of time
instants between two prescribed times. In the latter case we aim at learning and the entire dynamics of the joint PDF p(x, t), i.e.,
from t = 0 to t = tf .

13

where µ is penalty parameter and

MSEL(θ1, ...,θM , t) =
1

Nc

Nc∑
k=1

[
R(x(k), t)

]2
(22)

is the mean square error associated with the residual of the Liouville equation. As before, x(k) = Φ(x
(k)
0 , t)

(Φ is the flow map generated by (11)). The residual (20) can be easily evaluated by using automatic differ-
entiation techniques applied to (19).

Prototype dynamical system In the following sections we study the effectiveness of PINN and other
methods to predict the PDF and the flow map of the two-dimensional divergence-free nonlinear dynamical
system {

ẋ = 2xy − 1

ẏ = −x2 − y2 + µ
(23)

The phase portraits of the system (23) are plotted in Figure 11 for different values of the parameter µ. We
observe that the system undergoes two saddle node bifurcations at µ = 1.

Figure 11: Phase portraits of the system (23) for different values of µ.

14

2.2.2 Brief description of the machine learning algorithms we implemented

In this section, we outline our first implementation of the data-driven machine learning algorithms to esti-
mate the joint PDF of the solution to the dynamical system (11).

Data-driven machine learning This algorithm is purely based on data, i.e., sample trajectories of (11),
without the PDE constraint represented by the Liouville equation. Specifically, we use the bare-bones feed-
forward neural net sketched in Figure 10 with the cost function defined in (18).

Physics-informed data-driven machine learning This algorithm operates as follows:

1. Set up two deep neural nets using, e.g., TensorFlow [1].

• The first net learns an approximation of PDF, p̂(x, t) ≈ p(x, t). To this end, we generate
a training data set

{(
x(i), t(i)

)
, p
(
x(i), t(i)

)}
, i = 1, . . . , Nd, by forward and/or backward

integration of (11) from many different spatio-temporal points
(
x(i), t(i)

)
and evaluation of

p
(
x(i), t(i)

)
by (16). This is a supervised learning scenario with inputs

{(
x(i), t(i)

)}
and out-

puts
{
p
(
x(i), t(i)

)}
(see Figure 10).

• The second net is constructed using TensorFlow’s built-in automatic differentiation to estimate
the partial derivatives of p̂. It has the same parameters as the first net, and penalizes approxima-
tions p̂, which in general does not satisfy the Liouville equation (15).

2. The two nets are trained simultaneously with the cost function (21) (see Figure 12).

3. Once training is complete, we can use the first net to obtain fast approximations to the probability
density function at any point (see Figure 13).

2.2.3 Generating training data

Generating training data for neural nets is not exactly a straightforward process. Backward integration from
points x(i) may yield initial points with rather arbitrary positions. In this case, numerical integration will
take a very long time and may eventually fail. Forward integration from a set of points x(i)

0 ∼ p0(x) will
always yield well-defined data with non-zero probability, so long as the dynamical system (11) meets some
basic conditions. However, this data may not be well-structured for the purpose of representing p(x, t). For
divergence-free systems, feed-forward sampling can provide a reasonable approximation of the support of
p(x, t). Hence we can construct a convex hull around the points x(i) = Φ

(
x

(i)
0 , t

)
to estimate this support.

We can then “fill in” the rest of the convex hull by backward integration. We need to find other methods
for systems with divergence, since for these it is harder to estimate the support of p(x, t) directly from
Φ
(
x

(i)
0 , t

)
.

2.2.4 Numerical results

In this section we present the numerical results we obtained by training the feed-forward and PINN neural
nets with sample trajectories of (23) for the purpose of predicting the joint PDF of the state vector. In
particular, we tested the following different scenarios:

• Prediction of the joint PDF at final time with feed-forward neural nets;

15

Figure 12: Training physics-informed neural nets (PINN). The neural net NNp representing p̂(x, t) is sup-
plemented by a second neural net NNL which is a derivation of NNp obtained by automatic differentiation
and the Liouville equation (15). The free parameters of NNp are obtained by minimizing the mean-square
error MSEPINN defined in (21).

Figure 13: Predicting with trained physics-informed neural nets (PINN).

• Prediction of the full dynamics of the joint PDF with feed-forward neural nets;

• Prediction of the full dynamics of the joint PDF with physics-informed neural nets (PINN).

Hereafter, we analyze each case in detail, and discuss our numerical findings.

Prediction of the joint PDF at final time with feed-forward neural nets

By using the method of characteristics, we randomly generated PDF data points at time t = tf (tf variable)
for the two-dimensional divergence-free test system (23) with µ = 5. We chose the initial PDF p0(x, y) to
be the product of two independent Gaussians with means µx = µy = 0.75 and variances σ2

x = σ2
y = 0.25.

We learned the final time PDF using standard Tensorflow [1] without any secondary physics-informed neural
net [23]. We used an L-BFGS [3] optimizer and a tanh() activation function for the neural net, and varied
the configurations of the hidden layers to increase performance. In addition, before feeding data to the
neural net, we mapped spatial data (x, y) to [−1, 1], where tanh() is steepest, and took the logarithm of the
probability data. Learning the log probability ensured that the model would preserve positivity of the PDF.

16

Figure 14: Training data (top, 100, 200, and 2000 points, left to right) and 1000 × 1000 reconstructions
(bottom) of initial PDF p0(x, y), p(x, y, t = 0.5), and p(x, y, t = 1.0), left to right, using 8 hidden layers
with 20 neurons each. Root mean squared error (RMSE) with respect to Nv = 2500 validation data on a
50 × 50 grid: 4.60 e–04, 4.89 e–04, and 2.56 e–04, left to right. RMSE is taken with respect to the actual
probability, not the log probability.

Where the probability was too small, we set it to a minimum threshold e−15 ≈ 3.06 × 10−7, so that there
wouldn’t be any numerical problems when we took the logarithm.

Data generation We generated initial conditions
(
x

(i)
0 , y

(i)
0

)
∼ p0(x, y), i = 1, . . . , Ns, and numerically

integrated to t = tf to obtain
(
x(i), y(i)

)
. The probability data p

(
x(i), y(i), t = tf

)
was obtained using the

solution to the Liouville equation (16). We then enclosed these points in a rectangle and built an Nm ×Nm

uniform grid of points
(
x(i), y(i)

)
, i = 1, . . . , N2

m, from which we propagated backwards and used the
Liouville equation to get probability data. This provides a total of Nd = Ns +N2

m training data. For model
validation, we checked the neural net predictions on a uniform grid over the same area as the training data.

Model training In Figure 14, we visualize the training data and neural net reconstruction of the initial
PDF p0(x, y) and the final time PDF p(x, y, t = tf) for tf = 0.5 and tf = 1.0. We observe that the
dynamics (23) rapidly advect the smooth Gaussian into a thin curve. In Table 1 and 2 we present speed and
accuracy results for estimating p(x, y, t = 1.0) depending on the architecture of the neural net. For Table
3 and 4 we fixed the architecture and varied the amount of training data fed to the net. This let us test the
sensitivity of the net to data availability and determine good ratios of forward propagated data to backward
propagated data.

Discussion We immediately observe that the initial Gaussian is very easy to reconstruct. It can be learned
to O(10−4) accuracy in seconds with only a hundred or so training data points. At tf = 0.5, we can still
reliably reconstruct the PDF using only 200 points. As we advance time, however, the regression problem
becomes more difficult as the approximate support of p(x, y, t) advects into a thin curve with steep slopes.
Thus we require more training data, and deeper neural nets are more reliable for learning the PDF. Table 1

17

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 3.27 e–02 1.29 e–02 1.68 e–02 6.66 e–03
4 1.58 e–02 1.10 e–03 1.21 e–03 2.03 e–03
6 1.42 e–03 8.18 e–04 7.50 e–04 4.75 e–03
8 1.54 e–03 4.01 e–04 1.91 e–03 5.24 e–03
10 1.08 e–03 2.33 e–03 5.44 e–03 2.21 e–03
12 2.70 e–03 5.31 e–03 2.42 e–03 7.97 e–03

Table 1: Validation RMSE results for estimating the final time PDF p(x, y, t = 1.0), depending on the
structure of the neural net. The total amount of training data Nd is fixed at 2000 with Ns = 1100 points
for the forward propagation and Nm ×Nm = 30 × 30 uniform grid for backward propagation. Validation
RMSE is measured for Nv = 2500 data points on a 50 × 50 uniform grid. Note that because training
data are randomly generated, weights are randomly initialized, and the optimization problem is not convex,
performance can vary each time the model is trained.

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 22 s 69 s 88 s 97 s
4 35 s 60 s 78 s 90 s
6 35 s 44 s 108 s 104 s
8 22 s 82 s 99 s 172 s

10 50 s 60 s 120 s 160 s
12 46 s 76 s 158 s 195 s

Table 2: Training time of a neural net for estimating the final time PDF p(x, y, t = 1.0), depending on the
structure of the net. Training data generation (Nd = 2000 points) and validation data generation (Nv = 2500
points) by numerical integration take approximately 3 and 6 seconds each, while evaluating the trained net
for 90000 outputs takes a fraction of a second. Listed runtimes are for a naı̈ve single CPU implementation
using TensorFlow 1.8 [1] on a 2012 MacBook Pro with 2.5 GHz Intel Core i5 processor and 4 GB RAM.

shows that deeper neural nets tended to be more accurate; in particular we should use at least 6 hidden layers
for this problem. Meanwhile, there appears to be little benefit to increasing the number of neurons per layer,
except for several models which achieved O(10−4) RMSE on fortunate training sessions. Table 2 reveals
that we can make nets deeper with minimal increase in training time, whereas increasing the width of nets
is costly. At the same time, all the trained nets can produce one million outputs for plotting in a fraction of a
second. Meanwhile, generating onlyNv = 2500 validation data points by numerical integration took around
8 seconds on average. Thus, as we expect, neural nets are slow to train but incredibly fast once they are
trained. In Table 1 we observe that, apart from a few outliers, increasing the number of data points generally
improved accuracy. However, the kinds of training points used was also relevant. As discussed previously,
using more forward propagation points provides more resolution of the PDF within the approximate support,
while using more meshgrid points yields better boundaries for this region. There appeared to be a limit to
the usefulness of increasing the fineness of the meshgrid, however. Perhaps using too many grid points gave
the net too much weight on putting zeros outside of the approximate support, and not enough weight to
learning the shape of the PDF within the approximate support. Increasing the amount of data points had
some relation to increased training time, but not as much as one might expect.

18

Forward propagation points
800 900 1000 1100 1200 1300 1400

G
ri

d
po

in
ts 400 6.49 e–04 3.17 e–03 4.40 e–03 1.11 e–02 1.31 e–02 9.52 e–03 3.11 e–04

625 1.85 e–02 1.16 e–03 4.45 e–02 1.28 e–03 6.66 e–04 6.69 e–03 1.37 e–02
900 6.18 e–03 5.89 e–03 4.51 e–04 4.01 e–04 6.95 e–04 8.65 e–04 5.84 e–04
1225 1.03 e–02 9.38 e–04 9.73 e–03 7.15 e–03 7.43 e–03 1.86 e–03 3.79 e–03
1600 2.54 e–02 1.22 e–03 2.38 e–03 1.74 e–03 7.12 e–03 1.24 e–03 2.56 e–03

Table 3: Validation RMSE results for estimating the final time PDF p(x, y, t = 1.0) depending on the
availability of data. For all trials we use 8 hidden layers with 20 neurons each. Validation RMSE is measured
for Nv = 2500 data points on a 50× 50 uniform grid.

Forward propagation points
800 900 1000 1100 1200 1300 1400

G
ri

d
po

in
ts 400 58 s 67 s 67 s 50 s 52 s 94 s 71 s

625 37 s 63 s 85 s 79 s 70 s 45 s 104 s
900 140s 62 s 83 s 82 s 75 s 75 s 79 s
1225 62 s 86 s 60 s 67 s 88 s 82 s 69 s
1600 69 s 76 s 66 s 87 s 116 s 86 s 77 s

Table 4: Training time of a neural net for estimating thefinal time PDF p(x, y, t = 1.0) depending on the
availability of data. For all trials we used 8 hidden layers with 20 neurons each.

2.2.5 Prediction of the full dynamics of the joint PDF with feed-forward neural nets

Here we employed feed-forward deep neural nets to learn the whole temporal evolution of the joint PDF
p(x, y, t), within the time interval t ∈ [0, 1].

Data generation We used another heuristic data generation algorithm based off the one we used for the
final time PDF. This process is summarized in four steps below.

1. First we discretized the time interval t ∈ [t0, tf] into Nt number of distinct snapshots. About one
third of the snapshots tk were from a uniform discretization of the interval, including the endpoints.
The remaining two thirds were randomly sampled from a half-normal distribution and mapped to the
interval so that they would cluster closer to tf . That is, we constructed a time discretization which
was coarser near t0 and finer near tf . Having higher-resolution data near tf was helpful for our test
system (23), as the dynamics advected the initially smooth Gaussian into a thin curve, and moreover,
the speed of the advection increased with time. For other systems, the distribution of time snapshots
may need to be adjusted to improve performance.

2. As before, we randomly sampled a set of Ns initial conditions
(
x

(i)
0 , y

(i)
0

)
∼ p0(x, y), and prop-

agated those forward to obtain data points at teach time step,
(
x(i,k), y(i,k), tk

)
, i = 1, . . . , Ns,

k = 0, . . . , Nt − 1. Since the system was divergence free, it was trivial to assign probability data
p(i,k) = p0

(
x

(i)
0 , y

(i)
0

)
to each point, but even with divergence, fitting the solution to the Liouville

equation (16) in here would not be difficult.

3. Next we used two rounds of backward integration from each time snapshot tk. In the first round, we
built anNm×Nm uniform grid over the forward samples at each individual time snapshot. Backward

19

Figure 15: Example of the forward and backward sample strategy for generating data for the time dependent
PDF p(x, y, t). Here tk = 0.5, we use Ns = 100 forward samples and two Nm ×Nm = 10 × 10 grids of
backward samples. Left: forward samples and first round of backward samples. Center: forward samples
and second round of backward samples. Right: complete training data at time snapshot tk = 0.5.

numerical integration and the solution to the Liouville equation again supplied probability values.
This first grid encouraged the net to learn the boundaries of approximate support of the PDF at each
time step.

4. In the second round, for each time snapshot we constructed an additionalNm×Nm grid over the whole
spatial domain visited by the forward samples over all time t ∈ [t0, tf], and integrated backward from
there. This second grid supplied data further outside the approximate support at each time, which
allowed for better interpolation in between time steps as the net saw the whole spatial domain over
the whole time interval. This process yields Nd = Nt

(
Ns + 2N2

m

)
total training data. For a visual

example, see Figure 15.

We did not, however, track the flows backward in time and save them at each timestep. The reason we
avoided this extension is because backwards integration faces some numerical issues making these data un-
reliable. Some unlucky data points would be flung far away from the region of interest, and training on
these outliers could cause problems. Validation data was taken from a uniform sampling on the space and
time domains trained on by the model. This appeared to give a good indication of how well the model per-
formed, as indicated by visually inspecting the plots of p̂(x, y, t) at various times t. Unfortunately, all these
decisions are decidedly heuristic and based on the problem at hand (23). Data generation is undoubtedly the
main component of this method that can be improved in future work.

Model training In Figure 16, we visualize the neural net reconstruction of training data of the PDF
p(x, y, t) at time snapshots tk = 0.0, 0.5, and 1.0. This time, instead of requiring three separate train-
ing sessions, the neural net is trained once for the whole time interval t ∈ [0.0, 1.0], and we plot data only
from these points. Tables 5 and 6 include results on the training speed and accuracy of the neural net de-
pending on the net architecture. Tables 7 and 8 include results on the training speed and accuracy of the
neural net depending on the availability of training data.

Discussion Tables 5 and 7 show typical O(10−3) accuracy over time and space for the time dependent
model trained without a PINN. This is not as good as the O(10−4) accuracy of the final time model. Even
so, the time dependent error takes into account all time instances in the interval [0.0, 1.0], thus the net is
able to accurately estimate the PDF at times not represented in the training data. Moreover, we observe that
the time dependent model is able to more reliably reconstruct the PDF at later times (i.e. t → 1.0). That

20

Figure 16: Training data (top) and model reconstruction (bottom) of the PDF p(x, y, t) at time steps tk =
0.0, 0.5, and 1.0, from top to bottom. We used 8 hidden layers with 20 neurons each and fed the net total
of 5000 training data points distributed evenly among Nt = 10 time instances in t ∈ [0.0, 1.0]. The RMSE
was 1.26 e–03 on training data and 1.88 e–03 on 2500 validation data. Each frame of the reconstruction has
90000 points. The rough edge on top of the surface at t = 1.0 is due to the coarseness of the plotting data,
not the model prediction. We can use a 1000× 1000 or finer grid to resolve this more smoothly.

is, often the final time PDF model would have to be re-trained once or twice to get O(10−3) RMSE, while
we typically obtained this kind of accuracy on the first try with the time dependent model. We suspect that
having time as an additional input gave the net additional structure to learn from. The results in Table 5
indicate that accuracy is improved both by increasing the depth and width of the net. Of course, this came at
the cost of increased training time, as seen in Table 6. Finally, Table 7 shows that the net can learn the time
dependent PDF accurately with as few as around 3000 training data, which is not significantly more than
was needed for the learning p(x, y, t = 1.0). Increasing both the number of time snapshots and the data
points per snapshot improved accuracy somewhat, up to O(10−3). Increasing the number of time snapshots
appeared to be more helpful than increasing the number of points in each snapshot.

2.2.6 Prediction of the full dynamics of the joint PDF with physics-informed neural nets (PINN)

Using the same training data generation algorithm as for the time-dependent model learned from data only,
we implemented a physics-informed neural net [23] to approximate p(x, y, t) as described previously. To
this end, we leveraged TensorFlow’s [1] automatic differentiation capabilities to compute the partial deriva-
tives ∂p̂/∂t, ∂p̂/∂x, and ∂p̂/∂y and added an MSE penalty to neural net (see equation (21)). This additional
penalty was enforced on both the training data points and a set of collocation points randomly generated by
Latin hypercube sampling from the spatial domain and time interval trained. In Table 9 we summarize ac-
curacy results for the PINN depending on the net architecture. With the PINN, we can now reliably obtain
O(10−4) validation error with only half the number of training data we used before. These nets benefit from
having at least 20 or 30 neurons per layer, and the performance tends to improve if we make the net deeper.
Unfortunately, these nets also take around twice as long to train as the standard neural net (compare Table

21

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 7.81 e–02 3.84 e–02 4.00 e–02 7.48 e–02
4 1.66 e–02 1.54 e–02 2.28 e–02 5.05 e–03
6 1.66 e–02 2.07 e–03 3.04 e–03 3.01 e–03
8 4.14 e–02 1.10 e–03 9.64 e–03 3.57 e–03
10 7.28 e–03 3.13 e–03 2.40 e–03 5.48 e–03
12 3.22 e–03 7.86 e–03 4.74 e–03 4.76 e–03

Table 5: Validation RMSE results for estimating the time dependent PDF p(x, y, t) over the interval t ∈
[0.0, 1.0] depending on the structure of the neural net. The total amount of training data Nd is fixed at 5000
samples spread over Nt = 10 time snapshots. Validation RMSE is measured for Nv = 2500 data points.
Note that because training data and validation data are randomly generated, weights are randomly initialized,
and the optimization problem is not convex, performance can vary each time the model is trained.

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 50 s 127 s 153 s 180 s
4 74 s 146 s 182 s 246 s
6 101 s 159 s 194 s 258 s
8 187 s 143 s 214 s 261 s
10 111 s 213 s 222 s 324 s
12 164 s 219 s 357 s 400 s

Table 6: Training time of a neural net for estimating the time dependent PDF p(x, y, t) over the interval
t ∈ [0.0, 1.0], depending on the structure of the net. Training data generation (Nd = 5000 points) and
validation data generation (Nv = 2500 points) by numerical integration take approximately 5 and 2 seconds
each, while evaluating the trained net for 1.8 million outputs takes only about 2 seconds.

10 with Table 6). With enough collocation points, we can also compensate for having only a few training
data points, as seen in Table 11. These collocation points can be generated in a small fraction of a second,
but adding more collocation points does increase the training time significantly (see Table 12), so overall
there are no time savings with this method. The improved accuracy gained by using a PINN may be worth
the increased training time, depending on the problem. This will be important moving forward, as some
systems may be more poorly behaved than (23), especially once we address systems with divergence and
control.

Discussion The physics-informed neural net looks to be superior to the standard deep neural net for the
time-dependent problem, and has advantages over the neural net for estimating the final time PDF. These
are, specifically, robustness to poor data, and, of course, the availability of p̂(x, y, t) for all t ∈ [t0, tf]. This
could eventually open up the possibility of using control to steer the PDF around obstacles. The disadvantage
here was increased training time (prediction was still order of magnitudes faster than numerical integration).
We expect that deploying these programs on a GPU will close this gap. Before we can successfully use this
method for control, we will need to address three challenges.

22

Points per snapshot
200 300 400 500 600 700

Sn
ap

sh
ot

s 6 7.30 e–02 6.08 e–02 6.35 e–02 2.52 e–02 1.77 e–02 8.81 e–03
8 3.06 e–02 7.34 e–03 2.06 e–03 3.52 e–03 1.21 e–02 2.63 e–02

10 7.82 e–03 2.90 e–03 2.51 e–03 1.10 e–03 2.78 e–03 3.02 e–03
12 2.00 e–02 2.97 e–03 4.96 e–03 7.71 e–03 6.53 e–03 3.67 e–03
14 4.19 e–03 2.73 e–03 2.61 e–03 5.71 e–03 2.39 e–03 1.42 e–03

Table 7: Validation RMSE results for estimating the time dependent PDF p(x, y, t) over the interval t ∈
[0.0, 1.0] depending on the availability of data. For all trials we use 8 hidden layers with 20 neurons each.
Validation RMSE is measured for Nv = 2500 data points.

Points per snapshot
200 300 400 500 600 700

Sn
ap

sh
ot

s 6 106 s 101 s 84 s 141 s 139 s 125 s
8 69 s 101 s 117 s 124 s 146 s 117 s
10 86 s 108 s 133 s 143 s 159 s 131 s
12 138 s 138 s 146 s 154 s 210 s 211 s
14 109 s 128 s 193 s 310 s 256 s 248 s

Table 8: Training time of a neural net for estimating the time dependent PDF p(x, y, t) over the interval
t ∈ [0.0, 1.0], depending on the availability of data. For all trials we used 8 hidden layers with 20 neurons
each.

1. The current heuristic data generation scheme can be improved. Time snapshots, for example, could be
chosen adaptively to reflect the speed of the time evolution of the system (more snapshots where the
evolution is faster). Moreover, we need not generate only a fixed number of time snapshots and grids
at each snapshot – data can be distributed throughout the whole space-time domain. Also, we may be
able to improve the first round of backward sampling by choosing points in a concentrated way around
the forward samples. Specifically, we could build a convex hull around the forward samples and do
backward sampling within that hull, assigning more samples near those points identified to be close
to the boundary of the hull. This could provide both better resolution data within the approximate
support of p(x, t), as well as a better resolution of the boundary. A method for constructing the hull
and identifying points close to the boundary was proposed in [28].

2. Aside from the PINN, the neural net architecture we used here was very bare-bones. Many sophisti-
cated improvements to this basic architecture have been developed, which we can test. For example,
we can regularize the parameters θ of the net by adding an `1(θ) or `2(θ) penalty term to the train-
ing cost function (21). This will reduce the likelihood of having large parameters which can cause
unexpected behavior.

3. Lastly, we point out that PINNs are still rather underdeveloped methods. Here we used a direct
application of the method described in [23], which imposes the governing PDE on the model with a
single penalty term (22). Since the problem is highly non-convex, minimizing this term once is in no
way guaranteed to yield a satisfying solution. To address this, we will develop a way to enforce the
Liouville equation (15) as a constraint, which could further improve the efficacy of the PINN.

• Explicit constraints are difficult to implement in neural nets. To get around this, one possibility
is to manually encode a sort of penalty method by training in epochs. That is, we retrain the

23

Figure 17: Time evolution of p(x, y, t) for the system (23) where the initial PDF is the product of two
indepent Gaussians with means µx = µy = 0.75 and variances σ2

x = σ2
y = 0.25. Predictions are made

using a physics-informed neural net with 8 hidden layers, each with 20 neurons, trained on Nd = 2000 data
points andNc = 8000 total collocation points. The final RMSE was 6.98×10−4 with respect toNv = 2500
validation points.

net multiple times, each time increasing the weight of the second term (22) in the training cost
function (21). If the optimization converges, then intuitively we expect that in the limit, the
Liouville equation will be enforced as a constraint (we will need to prove this conjecture). We
can increase the weight of the constraint term either by simply scaling it, or by increasing the
number of collocation points fed to the net. The second option (or a combination of the two)
may be preferable, since using fewer points at the start will reduce computation time.

2.2.7 Refining physics-informed deep neural networks

This physics-informed neural network algorithms we described in section 2.2.1 do not consider the relative
magnitudes of the two error terms, nor does it seek to satisfy the governing Liouville equation (15) as a
constraint. In particular, since it only imposes a penalty, we often see that the training optimization gets
caught in a local minimum, which yields unsatisfying solutions. To overcome this difficulty, we tested two
refinements (and their combination) of the way MSEL in included in the optimization process.

• The first method consists in updating the weight of the penalty term MSEL, i.e., the parameter µ in
(21), as the neural network training progresses.

• The second method consists in randomizing which of the collocation points were used, and re-
sampling points as the neural network training progresses.

For both methods, we opted for a simple implementation and considered a defined number of iterations (or
“epochs”) in which we increase the penalty weight and/or re-sample the collocation points.

24

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 1.19 e–01 1.48 e–02 1.01 e–02 3.49 e–03
4 2.02 e–02 2.79 e–03 5.22 e–04 9.01 e–04
6 1.51 e–02 5.85 e–04 6.22 e–04 4.92 e–04
8 2.32 e–03 5.13 e–04 8.57 e–04 4.51 e–04
10 3.25 e–03 8.19 e–04 7.55 e–04 4.48 e–04
12 1.57 e–03 1.36 e–03 5.90 e–04 4.91 e–04

Table 9: Validation RMSE results for estimating the time dependent PDF p(x, y, t) over the interval t ∈
[0.0, 1.0] with a physics-informed neural net, depending on the structure of the net. The amount of training
data Nd is fixed at 2500 samples and the number of collocation points Nc is fixed to 5000 (including the
training data points). Validation RMSE is measured for Nv = 2500 data points. Note that because training
data, collocation points, and validation data are randomly generated, weights are randomly initialized, and
the optimization problem is not convex, performance can vary each time the model is trained.

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 53 s 188 s 419 s 403 s
4 163 s 232 s 439 s 593 s
6 64 s 368 s 538 s 676 s
8 286 s 385 s 618 s 742 s

10 270 s 578 s 635 s 907 s
12 294 s 598 s 670 s 1565 s

Table 10: Training time of a physics-informed neural net for estimating the time dependent PDF p(x, y, t)
over the interval t ∈ [0.0, 1.0], depending on the structure of the net. Training data generation (Nd = 2500
points) and validation data generation (Nv = 2500 points) by numerical integration each take approximately
2 seconds, while evaluating the trained net for 1.8 million outputs also takes only 2 seconds.

Increasing the penalty weight Increasing the penalty weight µ in (21) on-the-fly during the optimization
progresses turned out to not be much of an improvement at all. At the beginning we thought that increasing
the relative magnitude of the penalty term by scaling it in each iteration/epoch would lead to better solutions
of the governing PDE (15). However, the sequences of weights we tried typically made the solution worse
over time [20]. We ran 10 simulations, each with two different sequences of penalty weights, i.e.,

{µE} =
{√

iE−1 + E
}

and {µE} = {iE−1 + E}, (24)

where E = 1, 2, . . . , 10 is the epoch number, and iE−1 is total number of training iterations over all the
previous epochs. In Figure 18 we plot the results we obtained. In each iteration/epoch we used the full set
of Nc = 10000 collocation points and Nd = 2500 data points, and trained a neural net with 8 hidden layers
of 20 neurons each.

We found that the mean error for the unrefined PINN was 1.98 e–02, with a standard deviation of 5.66
e–02. Mean training time was 562 s, with a standard deviation of 248 s. For {µE} =

{√
iE−1 + E

}
the

mean error was 3.38 e–03, with a standard deviation of 4.00 e–03. Mean training time was 794 s, with a
standard deviation of 141 s. Finally for {µE} = {iE−1 + E} the mean error was 4.88 e–02 with a standard
deviation of 3.66 e–02. Mean training time was 812 s, with a standard deviation of 211 s. Of course,
the unrefined PINN is quicker to train since it requires only one iteration/epoch. Most of the time, it also

25

Collocation points
4000 5000 6000 7000 8000 9000 10000

Tr
ai

ni
ng

da
ta

500 1.72 e–03 1.38 e–02 1.40 e–02 3.83 e–02 2.25 e–03 1.69 e–03 1.41 e–02
1000 1.46 e–03 6.04 e–03 2.23 e–03 1.82 e–03 1.29 e–03 9.74 e–04 1.78 e–03
1500 8.33 e–03 3.20 e–03 1.99 e–03 1.40 e–03 7.91 e–04 8.39 e–04 1.19 e–02
2000 6.81 e–03 4.30 e–03 7.62 e–04 5.97 e–04 6.33 e–04 8.51 e–04 6.21 e–04
2500 1.06 e–03 5.13 e–04 6.42 e–04 8.05 e–04 8.62 e–04 8.56 e–04 9.88 e–04
3000 1.03 e–03 7.22 e–04 1.04 e–03 6.89 e–04 8.46 e–04 5.87 e–04 1.02 e–03

Table 11: Validation RMSE results for estimating the time dependent PDF p(x, y, t) over the interval t ∈
[0.0, 1.0] with a physics-informed neural net, depending on the total number of training dataNd and number
of collocation points Nc, including the training data points. For all trials we used 8 hidden layers with 20
neurons each. Validation RMSE is measured for Nv = 2500 data points.

Collocation points
4000 5000 6000 7000 8000 9000 10000

Tr
ai

ni
ng

da
ta

500 197 s 422 s 403 s 258 s 487 s 494 s 836 s
1000 240 s 320 s 353 s 269 s 484 s 404 s 489 s
1500 335 s 352 s 351 s 387 s 360 s 558 s 425 s
2000 362 s 428 s 404 s 495 s 563 s 515 s 517 s
2500 360 s 385 s 380 s 371 s 318 s 602 s 640 s
3000 287 s 319 s 321 s 390 s 535 s 706 s 529 s

Table 12: Training time of a neural net for estimating the time dependent PDF p(x, y, t) over the interval
t ∈ [0.0, 1.0] using a physics-informed neural net, depending on the total number of training data Nd and
number of collocation points Nc, including the training data points. For all trials we used 8 hidden layers
with 20 neurons each.

achieves better accuracy: when we ignore the two outliers at the top left of Figure 18, the mean error is 1.52
e–03 with standard deviation 1.03 e–03, mean training time is 623 seconds with standard deviation 171 s. On
the other hand, while giving the penalty term an increasing weight (in particular {µE} =

{√
iE−1 + E

}
)

tends to make the final error worse on most runs, it might also make the optimization more robust to poor
initializations. Thus, it may be possible to tune the sequence {µE} to improve the training robustness for
particular problems. Even if the weight sequence is constant over all epochs, it will be necessary to adjust
the magnitude relative to the data loss term so as to improve training.

Randomizing collocation points Randomly choosing a subset of the collocation points to train on in each
iteration/epoch served us to both

• Decrease training time;

• Regularize the training against bad initializations.

Specifically, we defined suitable sequences {Nc,E} = Nc,1, Nc,2, . . . , Nc, where Nc is the total number
of pre-generated collocation points, while Nc,E is the number of points used in iteration/epoch E. By
training on fewer collocation points at the beginning, we obtained an approximate solution in far less time
than training on the full set. Such solution can be subsequently refined and regularized by re-sampling

26

Figure 18: Performance of physics-informed neural nets with cost function (21) and fixed µ = 1 (unrefined
PINN) versus neural nets where we increase the penalty parameter {µE} on-the-fly as optimization pro-
ceeds. Here used Nd = 2500 training data, Nc = 10000 collocation points, E = 1, . . . , 10 iteration/epochs,
and 8 hidden layers with 20 neurons each.

Figure 19: Performance of physics-informed neural nets with cost function (21) and fixed µ = 1 (unrefined
PINN) versus neural nets where we randomly select collocation points {Nc,E} according to the sequences in
(25)-(26). Here we use Nd = 2500 training data, Nc = 10000 total collocation points, Emax = 10 epochs,
and 8 hidden layers with 20 neurons each.

collocation points used in each iteration/epoch. We tested two sequences,

{Nc,E}root =

{
Nc

√
E/Emax + 1

2

}
, (25)

{Nc,E}linear =

{
Nc
E/Emax + 1

2

}
. (26)

With Nc = 10000 collocation points, the first epoch was trained with Nc,1 = 7416 (root sequence) and
Nc,1 = 5500 (linear sequence), respectively. These were completely re-sampled in each epoch, meaning that
some points used in previous epochs were not necessarily included in following epochs. Overall we obtained
a similar maximum accuracy (that is, the best accuracy obtained over all trial runs), while driving the mean
and variance of the error down significantly. In addition, training was reliably faster than for the unrefined
PINN. In Figure 19 we summarize the performance of the randomized algorithm. Specifically, we used 10
trials for each sequence (25)-(26), and compared the results to the unrefined PINN results used before. We

27

Figure 20: Performance of physics-informed neural nets with cost function (21) and fixed µ = 1 (unrefined
PINN) versus neural nets where we randomly select collocation points {Nc,E} in each iteration/epoch,
along with increasing scalar penalty weights {µE} =

{√
iE−1 + E

}
. Here we use Nd = 2500 training

data, Nc = 10000 total collocation points, Emax = 10 epochs, and 8 hidden layers with 20 neurons each.

notice that for the root sequence (25), the mean error is 9.15 e–04, with a standard deviation of 4.59 e–04.
The mean training time is 577 s, standard deviation was 27 s. For the linear sequence (26), the mean error is
8.64 e–04 with a standard deviation of 4.17 e–04. The mean training time is 463 s with a standard deviation
of 58 s. Randomizing collocation points over iterations/epochs made the optimization of the cost function
(21) significantly more robust, and with the sequence (26) also significantly quicker. Since this appears
to already provide good regularization, we do not attempt to make `1 or `2 weight regularization work: a
quick prototype already indicated that these added computational burden without making the training more
reliable.

Combining randomized collocation points with evolving penalty weights To reduce the validation
mean squared error further, we tried to combine randomization of collocation points with evolving penalty
terms. This approach yields some improvements in training robustness and speed, but not as much as us-
ing the randomized collocation points with constant penalty weights. Specifically, we perfomed the same
numerical experiment with both series of collocation point numbers, combined with the first set of weights
{µE} =

{√
iE−1 + E

}
. Figure 20 shows the results. Randomizing the collocation points is the clear win-

ner here, though scalar penalty weights may need to be added and tuned depending on the problem at hand.
Note that if we use the randomized root sequence (25) with {µE} =

{√
iE−1 + E

}
, the mean error is 2.22

e–03, with a standard deviation of 2.57 e–03. This mean training time is 653 s, with a standard deviation of
125 s. On the other hand, if we use the linear sequence (26) with {µE} =

{√
iE−1 + E

}
, then we obtain a

mean error of 3.58 e–03 with a standard deviation of 4.18 e–03. In this case the mean training time is 551 s
and the standard deviation is 137 s.

Training physics-informed neural nets with log probability data and different cost functions Pre-
viously, we made the decision to train on log probability data so that the net would predict only positive
probability values, since there is no other way to neatly enforce this constraint. The downside is, however,
that when p ≈ 0, |log p| >> 1. Consequently in log scale, the difference between small probability values
is magnified, and the difference between large probability values is made insignificant in comparison. It fol-
lows that minimizing a mean square error term on log probabilities, as we do in (18), encourages the model

28

to accurately learn minute differences where p is small, but ignore relatively large differences between large
probability values. Thus it makes sense to consider different error metrics for the training data. We consider
and compare three different error metrics: the MSE on the true probability, a weighted MSE on the log
probability, and the symmetric Kullback-Leibler divergence.

• Mean squared error. This is possibly the most intuitive error metric we can use. Instead of (18), we
calculate

MSEdata, true(θ) :=
1

Nd

Nd∑
i=1

[
exp log p̂

(
x(i), t

)
− p

(
x(i), t

)]2
. (27)

This immediately provides an error term which scales with the magnitude of the probability.

• Weighted mean squared error. Here we simply weight each term of the MSE on log probability by
the true probability value. Since this true probability is already available (it is pre-calculated), this
only requires Nd additional multiplications each time the loss is computed.

MSEdata, weighted(θ) :=
1

Nd

Nd∑
i=1

p
(
x(i), t

) [
log p̂

(
x(i), t

)
− log p

(
x(i), t

)]2
. (28)

• Symmetric Kullback-Leibler divergence. The last error metric we test is the Kullback-Leibler di-
vergence, a well-known metric for comparing two probability distributions. So that we do not favor
large p̂, we use the symmetric version as originally proposed in [16]:

sDKL(p‖p̂(θ)) = DKL(p‖p̂(θ)) + DKL(p̂(θ)‖p),

=

∫
p(x) [log p(x)− log p̂(x)] dx+

∫
p̂(x) [log p̂(x)− log p(x)] dx. (29)

Next we assume that the training data is a representative sample from the training domain and ap-
proximate the integrals by Monte Carlo integration. We let V be the volume of the training domain
(including time) so that

sDKL(p‖p̂(θ)) ≈ V 1

Nd

Nd∑
i=1

p
(
x(i), t

) [
log p

(
x(i), t

)
− log p̂

(
x(i), t

)]
+ V

1

Nd

Nd∑
i=1

exp
(

log p̂
(
x(i), t

)) [
log p̂

(
x(i), t

)
− log p

(
x(i), t

)]
=

V

Nd

Nd∑
i=1

[
p
(
x(i), t

)
− exp

(
log p̂

(
x(i), t

))] [
log p

(
x(i), t

)
− log p̂

(
x(i), t

)]
.

(30)

In this formulation we need to take Nd exponents, Nd additional subtractions, and one additional
multiplication, making each cost evaluation about as expensive as the MSE on the true probability
(27).

Hereafter, we train a physics-informed neural network 10 different times with each different training data
error metric described above. This gives us an indication of how well they perform. We train for only on one
iteration/epoch using a constant weight of µ1 = 1 on the Liouville term, and the same number of data points
and architecture as before. In other words, we examine the effects of the metric we use in the cost function
(21) for the so-called “unrefined PINN”. For validation, we still use the root mean square error (RMSE) with

29

Figure 21: Performance of physics-informed neural nets with cost function (21) and fixed µ = 1 trained
with different training data loss metrics. We train for one epoch with Nd = 2500 training data, Nc = 10000
total collocation points, and 8 hidden layers with 20 neurons each.

respect to the benchmark probability. This is so that we can compare results of these trials to prior results,
and because this appears to be a good metric for validation (though not necessarily training). Figure 21
summarizes all results we obtained. We see that if we use the cost (27), we obtain a mean validation RMSE
(on benchmark probability) of 1.76 e–02 with standard deviation 2.17 e–02. The mean training time is 888
s while the standard deviation is 332 s. On the other hand, with the cost functional (28) the mean validation
error is 6.49 e–04 with standard deviation was 2.34 e–04. The mean training time is 564 s with standard
deviation 141 s. Lastly with the symmetric Kullback-Leibler divergence (30) the mean error is 1.73 e–03
with standard deviation was 2.17 e–03, while the mean training time is 619 s with a standard deviation of
131 s. The results of Figure 21 suggest that training on the benchmark probability data (27) takes longer
and is significantly less accurate than training on the log probability data (18). This is somewhat surprising
because minimizing this error metric is equivalent to minimizing the RMSE, from which we evaluate our
trained models. Since evaluating the cost metric alone is not significantly more expensive than for a the MSE
on log probability, the long training times must be caused by the difficulty in training on this metric. On the
other hand, both the weighted MSE (28) and the symmetric Kullback-Leibler divergence (30) compare well
to MSEdata (18). The symmetric Kullback-Leibler divergence performs about as well MSEdata without the
outliers. This implies that it is somewhat more robust. The weighted MSE is the outstanding performer
here: it is reliably more accurate than all the other error metrics, without taking longer to train.

2.2.8 Application to the Van der Pol oscillator

So far we tested our algorithms to the divergence-free system (23). In this section we study non-divergence-
free systems. In particular, we consider the Van der Pol oscillator as a model test problem. The governing
equations are {

ẋ = y,

ẏ = µ
(
1− x2

)
y − x.

(31)

Since trajectories for this system are bounded (they are drawn to the limit cycle), data generation is less
complicated than for possibly unbounded systems. Typically we set the damping parameter to µ = 1.0. The
phase portrait that corresponds to this value of µ is shown in Figure 22. While the trajectories themselves are
integrated quite easily, the density can become quite large at some points on the limit cycle. This means that

30

Figure 22: Phase portrait of the Van der Pol oscillator (31) for µ = 1.

depending on where we place the initial distribution, the density can reach numerical infinity in finite time.
Thus the success of the PDF estimation is highly dependent on the particular choices of p0 and tf . Working
with PDFs with densities on different scales, in particular if the scales change over time, will be a central
challenge when we implement this method with control. This is because, in general, the ideal control will
push the PDF into a tall, thin spike around some target point. That is, in general we would like the variance
to be small, which means the density over the desired expectation will be quite large. It is possible that
learning the flow map and inverse flow map, then using equation (16), will alleviate this problem.

Data generation We still use the existing data generation algorithm, largely unchanged. The only dif-
ference is that we temporarily save the solutions at all time values output by the adaptive time stepping in
SciPy’sdop853 ODE integrator [12, 13]. We then used simple trapezoidal integration over the resulting
time series to approximate (16), giving us p(x, t) at all the time steps t = tk. This additional data was not
saved for training, though we could have done so. Saving all trajectory data might have slightly improved
accuracy, at the cost of more training time. The only reason to do this was to get better approximations of
p(x, t = tk).

Normalized validation error To facilitate accuracy comparison between different problems, we normal-
ize the validation RMSE in the following way

NRMSEval =

√√√√ 1

Nv

Nv∑
i=1

[
p
(
x(i)
)
− p̂

(
x(i)
)]2

max
i
p
(
x(i)
)
−min

i
p
(
x(i)
) . (32)

For example, one trial on the two-dimensional divergence-free test system (23) with the usual problem
parameters and hyperparameters yielded a validation RMSE of 5.88 e–04, which translated to a normalized
RMSE of 9.26 e–04. For this system and initial distribution we had a normalization factor of max pval −
min pval ≈ 0.63, so all previous results can be similarly scaled for comparison.

31

tf training time RMSE NRMSE
1 286 s 5.66 e–04 9.05 e–04
2 303 s 1.08 e–03 1.76 e–03
3 481 s 1.94 e–03 3.48 e–03
4 699 s 3.71 e–03 5.96 e–03

Table 13: Van der Pol oscillator (31) with initial PDF centered at the origin. Training time of the physics-
informed neural network with randomized samples and increasing penalty weights.

Numerical results

In this section we study the random initial value problem for the Van der Pol equation (31). We consider
three different cases

• Initial PDF centered at the origin of the phase plane (see Figure 22);

• Initial PDF centered inside the limit cycle;

• Initial PDF centered outside the limit cycle.

These cases yield similar dynamics but different time-evolving PDFs. Hereafter, we study each case in
detail.

Initial PDF centered at the origin First we let p0(x, y) be the product of two independent Gaussians
centered at (µx, µy) = (0, 0), with standard deviations (σx, σy) = (0.5, 0.5). We approximate the time-
dependent solution with final times tf = 1, 2, 3, and 4 using different neural networks. Each model had
8 hidden layers of 20 neurons each and was trained using weighted log probabilities (28) for the training
cost and randomized collocation points according to the formula (26) with Emax = 10 iteration/epochs. We
chose a simple penalty weight sequence {µE} = {E}. We train the network on Nd = 2500 training data
split among Nt = 10 time snapshots (Ns = 200 forward samples), along with Nc = 10000 collocation
points. Finally, each model was validated against Nv = 2500 data points with t ∈ [0, tf]. In Table 13 we
summarize the training times for the final PDF at different times. In Figures 23 and 24 we plot the PDF
we obtain with two neural nets over the interval t ∈ [0.0, 4.0]. The first net is trained only with data for
t ∈ [0.0, 3.0], so the two last frames are extrapolated. In both sets of predictions, we see that the initial
PDF spreads out and is attracted to the familiarly shaped limit cycle. In addition, most of the probability
mass tends to accumulate at opposite corners of the limit cycle. The extrapolation for the first net is still
fairly accurate at t = 3.5, which we confirm by visually comparing it to the second net’s prediction, and
estimating the total probability mass at that time to be 1.0449.

Initial PDF centered inside the limit cycle (not at the origin) Now we let p0(x, y) be the product of two
independent Gaussians centered at (µx, µy) = (0.5, 0) with standard deviations (σx, σy) = (0.5, 0.5). This
places almost all of the initial probability mass inside the limit cycle, slightly off center. We approximate the
time-dependent solution with final times tf = 1, 2, and 3 using different networks. The hyper-parameters
were chosen as before, except for the Liouville penalty weight which we fixed at {µE} ≡ 1. In Figures 25
and 26 we plot the outputs of two neural nets over the interval t ∈ [0.0, 3.0]. The first net is trained only
with data for t ∈ [0.0, 2.0], so the final three frames are extrapolated. With just this small change in the
initial PDF, the density grows much faster on the limit cycle, making the problem significantly harder than

32

Figure 23: Time evolution of p(x, y, t) for the Van der Pol oscillator (31) where the initial PDF is the product
of two indepent Gaussians with means µx = µy = 0 and variances σ2

x = σ2
y = 0.25. Here the net is trained

with data in the interval t0 = 0.0 to tf = 3.0, so the final two frames are extrapolated.

that with the initial PDF at the origin. The extrapolation with the first net is surprisingly accurate even at
t = 2.6, but starts to break down after this point.

Initial PDF centered outside the limit cycle Lastly, we let p0(x, y) be the product of two independent
Gaussians centered at (µx, µy) = (0, 3) with standard deviations (σx, σy) = (0.5, 0.5). This places the
initial PDF outside of the limit cycle. This problem is harder since the density grows much faster than the
other problems, so we train only up to tf = 1. Here we use Nt = 15 time snapshots (still with Ns = 200
forward samples, yielding Nd = 3750 training data) since the temporal evolution of the PDF is much
quicker, along with Nc = 15000 total collocation points. Other hyper-parameters are the same. This neural
net took 534 s to train, reached a validation RMSE of 1.12 e–02, which scales to a NRMSE of 3.06 e–03.
Qualitatively, the probability quickly moves to the corner of the limit cycle and then accumulates there quite
rapidly. Trajectory sampling beyond this time interval (to say tf = 3) shows that the probability mass
then moves slowly along the limit cycle, with ever-increasing density reaching over 800 by tf = 3. This
experiment shows that differently scaled probability densities are very difficult for these neural nets to learn.
Improving the behavior when faced with large density spikes will likely be a central challenge when we add
control, since most desired controls will push the density into a thin, tall spike.

33

Figure 24: Time evolution of p(x, y, t) for the Van der Pol oscillator (31) where the initial PDF is the product
of two indepent Gaussians with means µx = µy = 0 and variances σ2

x = σ2
y = 0.25. Here the net is trained

with data in the interval t0 = 0.0 to tf = 4.0.

2.2.9 Flow map prediction with deep neural networks

In this section we develop neural network models to predict the forward and the inverse flow maps of
arbitrary nonlinear dynamical systems. With the flow map available, we can quickly predict solutionsx(t) =
Φ(x0, t) for any (x0, t) in the training domain – without any numerical integration. Moreover, the flow map
allows us to compute any statistical property of the system, including correlation between different phase
variables and temporal correlations. For instance, we have

E {x1(t)x3(s)} =

∫ ∞
−∞

Φ1(x0, t)Φ3(x0, s)p0(x0)dx0. (33)

On the other hand, the solution to the Liouville equation (16) allows us to compute statistical properties at
a specific time, i.e., but it does not include information on joint statistics at different times, e.g., temporal
correlations.

Neural net architecture How do we build a neural network to predict the forward and the inverse flow
maps? What inputs and outputs should the neural net take? Hereafter we discuss two architectures we
propose, which we will study in detail in subsequent sections.

34

Figure 25: Time evolution of p(x, y, t) for the Van der Pol oscillator (31) where the initial PDF is the product
of two independent Gaussians with means µx = 0.5, µy = 0 and variances σ2

x = σ2
y = 0.25. Here the net

was trained with data in the interval t0 = 0.0 to tf = 3.0.

• “Jump” flow map estimator. The first possibility is to learn it exactly in the form defined in equation
(12), i.e., x(t) = Φ(x0, t). That is, we feed the net an initial condition x0 and a desired (final) time
t. The net learns to output the state x(t) which evolved from that initial condition, so it “jumps” from
the initial condition to the desired time. Similarly for the inverse flow map x0 = Φ0(x, t), we feed
in a state x and time t, and the net learns to output the initial condition x0 which would generate that
state when the system is evolved to time t.

• “Step” flow map estimator. Another possibility is to discretize the time interval of interest [t0, tf]
into Nt time steps and have the net learn to step forward to the next time step. Thus, we feed the
net inputs x(t) and t, and the net outputs x(t + ∆t). Since we will soon add open-loop control, we
will need to consider non-autonomous systems, which is why we also include time-dependence in the
input. The net for learning the inverse map is much the same, with inputs x(t) and t, but the output is
a step back: x(t−∆t).

The advantages of the first option are its simplicity and flexibility in the output: once trained, getting the
map to final or initial state requires only a single evaluation of the appropriate neural net. The second option,
on the other hand, seems to be easier to train (as we will discuss shortly). Furthermore, for the application of
obtaining probability values at final time, we only need to train one neural net – i.e., that for approximating

35

Figure 26: Time evolution of p(x, y, t) for the Van der Pol oscillator (31) where the initial PDF is the product
of two independent Gaussians with means µx = 0.5, µy = 0 and variances σ2

x = σ2
y = 0.25. Here the net

was trained with data in the interval t0 = 0.0 to tf = 3.0.

the inverse flow map. Recall that evaluating eq. (16) for p(x, tf) requires knowledge of x0 = Φ0(x, tf), as
well as x(t) = Φ(x0, t) for enough values of t ∈ [t0, tf] to accurately approximate the integral. A neural
net which learns to step backwards in time automatically obtains this time series as we repeatedly evaluate
it to reach x0.

Forward and inverse flow map approximation using independent neural nets We rewrote our data
generation algorithms and physics-informed neural net for PDF approximation to separately approximate
the forward and the inverse flow maps. The architecture for the physics-informed neural net approximating
the forward flow map with a “jump” is sketched in Figure 28. If we use the physics-informed neural net
here (often we do not need to, see discussion below), the total loss (for the forward flow map approximator)
is the sum of two terms:

lossfwd(θ;E) := lossdata(θ) + µE lossconstraint(θ), (34)

where θ are the shared parameters of both nets and µE is a weight which depends on the training epoch E.

36

Figure 27: Time evolution of p(x, y, t) for the Van der Pol oscillator (31) where the initial PDF is the product
of two independent Gaussians with means µx = 0, µy = 3 and variances σ2

x = σ2
y = 0.25. Here the net was

trained with data in the interval t0 = 0.0 to tf = 1.0.

Here the training data loss is a simple mean square error loss given by

lossdata = MSEdata(θ) :=
1

Nd

Nd∑
j=1

[
x(j)

(
t(j)
)
− Φ̂

(
x

(j)
0 , t(j)

)]2
, (35)

or a “logcosh” loss given by

lossdata = logcoshdata(θ) =
1

Nd

Nd∑
j=1

log
[
cosh

(
x(j)

(
t(j)
)
− Φ̂

(
x

(j)
0 , t(j)

))]
. (36)

For the constraint loss we usually use a sum of MSE losses, with one term in the sum for each dimension in
the state-space:

lossconstraint(θ;E) =

n∑
i=1

1

Nc,E

Nc,E∑
j=1

[
R
(

Φ̂i

(
x

(j)
0 , t(j)

))]2
, (37)

where Nc,E is the number of collocation points used in the epoch E. We also have the option of a sum of
logcosh losses on these residuals. Like before, we define R as the residual when the neural net prediction
Φ̂(x0, t) is inserted into the set of flow map equations (13), i.e. R(Φ̂i) := ∂Φ̂i/∂t − G · ∇Φ̂i, for i =
1, . . . , n. The neural net architectures and loss terms for the “jump” inverse flow map estimator, as well as
for the “step” flow map estimator, are similarly defined, with small and obvious changes in the inputs and
outputs.

Bi-directional autoencoders to learn simultaneously the forward and inverse flow maps We also pro-
pose a method to join the two independent neural nets which estimate the forward and inverse flow maps,
hence deriving neural net capable of estimating simultaneously both maps. As we will discuss later, the

37

Figure 28: Architecture of the PINN for training the neural net NNx using a set of supplementary neural
netsNNL,i, i = 1, . . . , n (n is the dimension of the system) to penalize predictions x̂(t) which deviate from
the flow map equations (13).

inverse flow map is typically much more challenging to approximate than the forward flow map. This is
associated with well-known challenges in backward numerical integration of dynamical systems. As we
will show hereafter, by using the bi-directional autoencoders we will be able to mitigate some difficulties in
the approximation of the inverse flow map, by using the forward flow map.

To accomplish this, we first pre-train both nets independently. Next we train them simultaneously using
a cost function which is the weighted sum of the cost functions (34) of the forward and inverse maps, and
two autoencoding terms which encourage the pair of neural nets to be left and right inverses of one another.
We call this pair of neural nets a bi-directional autoencoder. The total loss function for the bi-directional
autoencoder can be written as

losstotal(θfwd,θinv;E) = lossfwd(θfwd;E) + λ1 · lossinv(θinv;E)

+ λ2 · lossx0 autoencode(θfwd,θinv) + λ3 · lossx autoencode(θfwd,θinv). (38)

Here we denoted by θfwd, θinv and lossfwd, lossinv as the parameters and loss functions (see eq. 34) of the
forward and inverse flow map approximators, respectively. Further, we let λ1, λ2, and λ3 be constant scalar
weights, and

lossx0 autoencode(θfwd,θinv) :=
1

Nd

Nd∑
j=1

[
x

(j)
0 − Φ̂0

(
Φ̂
(
x

(j)
0 , t(j)

)
, t(j)

)]2
. (39)

We have written the inverse autoencoding term with MSE loss here, but a logcosh loss can also work.
Similarly, the forward autoencoding term is given by

lossx autoencode(θfwd,θinv) :=
1

Nd

Nd∑
j=1

[
x(j) − Φ̂

(
Φ̂0

(
x(j), t(j)

)
, t(j)

)]2
. (40)

Figure 29 helps make these loss terms more intuitive. Note that eqs. (39) and (40) are for the “jump” flow
map estimator – analogous terms for the “step” estimator can be easily defined.

Data generation for the “Jump” flow map estimator We started the data generation process by defining
a region of interest for the initial condition, in these tests we used a hypercube for convenience. We then

38

inverse autoencoder forward autoencoder

Figure 29: Diagrams representing the inverse (eq. (39)) and forward (eq. (40)) autoencoders for flow map
approximation.

randomly sampled (by e.g. Latin hypercube sampling) from this region, giving us a set of points
{
x

(j)
0

}
,

j = 1, . . . , Nf
s . We then randomly selected 2/3 of these points for training, and 1/3 for validation. Finally

from each point we numerically integrated forward to time tf , saving a set of points
(
x

(j)
0 ,x(j)

(
t(k)
)
, t(k)

)
for each time step t(k) ∈ [t0, tf] used by the adaptive timestepping in the chosen integrator. For all tests
here we used SciPy’s dop853 [12, 13] ODE integrator. While this forward data can also be used for
training the inverse approximator, we reasoned that by creating additional backward samples we could
fill in gaps in the final time data. For simplicity we used Latin hypercube sampling from the hypercube
enclosing the data points at final time to obtain a set of points

{
x(j)(tf)

}
, j = 1, . . . , N b

s . We randomly
selected 2/3 of these for training data and the remaining 1/3 for validation data. Next we numerically
integrated backwards to t0, again saving the outputs at each adaptive time step, and used x(t0) to complete
the backward data:

(
x(j)(t0),x(j)

(
t(k)
)
, t(k)

)
. Note that while forward integration is typically successful

for well-behaved systems, backward integration can yield trajectories which escape in finite time and often
fails for these same systems. Thus we only saved trajectories for which the integration was successful and
x(t0) was not too far outside of the original sampling region of x0. Collocation points {x(j)

0 , t(j)}, j =
1, . . . , Nc, for enforcing the flow map equations (13) consist of training data, supplemented by additional
points drawn by Latin hypercube sampling from the domain of x0 and time interval [t0, tf]. Collocation
points {x(j), t(j)}, j = 1, . . . , Nc, for enforcing the inverse flow map equations (14) consist of the training
data, plus additional points generated by Latin hypercube sampling from the entire space-time domain of the
training region. As we will demonstrate below, using the PINN often makes results less accurate. We suspect
the collocation point sampling method is to blame: it is easy to imagine that Latin hypercube sampling (or
uniform sampling, etc.) yields many points which will be far away from the main cloud of trajectories, thus
introducing numerous outliers into the collocation data. It is possible that sampling inside a (nearly) convex
hull around the trajectory tube could make the PINN more accurate.

Data generation for the “Step” flow map estimator The major difference between the two data gener-
ation algorithms is simply where – or more precisely, when – we save the data. For the networks which
learn to step forward or backward in time, we discretize the time interval [t0, tf] into Nt time snapshots
t0, t1 = t0 + ∆t, . . . , tk = t0 + k∆t, . . . , tNt = tf , where ∆t := (tf − t0)/Nt, and have the ODE in-
tegrator output results at those time snapshots. The kind of data we save is, of course, different. We now
save data for the forward map in the form (x(t),x(t + ∆t), t + ∆t), so that each input x(t) is paired with
its value at the next time step, x(t + ∆t), and the time at output t + ∆t. Recall that we include time-
dependence so that we can generalize to non-autonomous systems. The form of the backward map data is
simply (x(t+ ∆t),x(t), t). For collocation points, the form of the flow map equations differs slightly. The

39

components of the forward flow map satisfy2

∂Φi(x(t), t+ ∆t)

∂t
−G(x(t), t+ ∆t) · ∇Φi(x(t), t+ ∆t) = 0. (41)

Similarly, the components of the inverse flow map satisfy

∂Φ−1
i (x(t+ ∆t), t)

∂t
+G(x(t+ ∆t), t) · ∇Φ−1

i (x(t+ ∆t), t) = 0. (42)

Here we have written Φ−1
i (·) to denote the ith component of inverse flow map which maps back one

time step, distinguishing it from the ith component of the full (“jump”) inverse flow map, Φ0,i. Thus,
the collocation points for the forward map look like

{
x(j)

(
t(j)
)
, t(j) + ∆t

}
, for j = 1, . . . , Nc. These

points again consist of the training data, augmented with spatial data drawn from the training region,
and time values picked from the discrete time instances t0, t1, . . . , tNt−1. For the inverse map we have{
x(j)

(
t(j) + ∆t

)
, t(j)

}
, j = 1, . . . , Nc, with time values also picked from t0, t1, . . . , tNt−1.

Numerical results

In this section we present numerical results of flow map estimation using the algorithms described in the
previous sections. For consistency with previous error metrics, here we we use the normalized root mean
square validation error defined as

NRMSEval =

√√√√ 1

Nv

Nv∑
j=1

n∑
i=1

[
x

(j)
i

(
t(j) + ∆t

)
− Φ̂

(j)
i

(
x

(j)
i

(
t(j)
)
, t(j)

)]2

√√√√ 1

n

n∑
i=1

[
max
j
x

(j)
i

(
t(j) + ∆t

)
−min

j
x

(j)
i

(
t(j) + ∆t

)]2
. (43)

We tested our algorithms by approximating the flow maps generated by the Van der Pol oscillator (31) in the
time interval [t0, tf] = [0, 4]. We conducted one set of tests with initial conditions sampled from the region
x0, y0 ∈ [−2, 2], i.e., within and outside the limit cycle (see Figure 22). Backward trajectories for which
x(t0) or y(t0) were not in [−3, 3] were simply discarded. We conducted another set of tests with initial
conditions sampled from the region x0 ∈ [−1, 3], y0 ∈ [−2, 2]. Backward trajectories for which x(t0) were
not in [−2, 4] or y(t0) 6∈ [−3, 3] were discarded. For the “jump” neural net estimator, we used 100 forward
samples for training and 50 for validation, and 150 backward samples for training and 75 for validation.
Not all samples integrated successfully, unsuccessful integrations were not resampled. For the “step” flow
map estimator, we used 40 forward samples for training and 20 for validation, and 60 backward samples for
training and 30 for validation. Each trajectory was evaluated at Nt = 50 time snapshots. Not all samples
integrated successfully, unsuccessful integrations were not resampled. For all tests we used 8 hidden layers
with 20 neurons each. Each test was conducted 5 times, using the same 5 random seeds to enable better
comparison. Other parameters are discussed where relevant.

Forward “jump” flow map estimator results We first tested the forward “jump” flow map estimator. We
conducted one set of tests without the physics-informed neural net, i.e., using a plain feed-forward neural

2Note that equations (41) and (42) hold for non-autonomous systems of the form ẋ = G(x, t), x(0) = x0.

40

Plain neural net (no PINN) with Nc = 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2492 1199 115 s 4.90 e–03 8.81 e–04
2 2506 1223 130 s 4.57 e–03 7.99 e–04
3 2523 1218 110 s 7.29 e–03 1.38 e–03
4 2570 1262 96 s 6.11 e–03 1.12 e–03
5 2622 1150 124 s 7.12 e–03 1.27 e–03

mean 2543 1210 115 s 6.00 e–03 1.09 e–03
SD 53 41 13 s 1.24 e–03 2.48 e–04

Table 14: Accuracy and training time of a plain neural net for approximating the forward “jump” flow map
of the Van der Pol oscillator (31) with x0, y0 ∈ [−2, 2]× [−2, 2]. Listed runtimes are for a naive single CPU
implementation using TensorFlow 1.8 [1] on a 2012 MacBook Pro with 2.5 GHz Intel Core i5 processor and
4 GB RAM.

PINN with Nc = 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2492 1199 519 s 4.01 e–03 7.22 e–04
2 2506 1223 530 s 2.38 e–03 4.16 e–04
3 2523 1218 494 s 3.36 e–03 6.34 e–04
4 2570 1262 502 s 1.83 e–03 3.34 e–04
5 2622 1150 463 s 3.58 e–03 6.37 e–04

mean 2543 1210 506 s 3.03 e–03 5.49 e–04
SD 53 41 26 s 8.99 e–04 1.65 e–04

Table 15: Accuracy and training speed of a PINN for approximating the forward “jump” flow map of the
Van der Pol oscillator (31) with x0, y0 ∈ [−2, 2]× [−2, 2].

net, and another with the PINN using Nc = 5000 total collocation points. When we used the PINN, we
kept a constant scalar penalty weight of µE = 1.0, and randomly selected collocation points according to
(26), with Emax = 10 iterations/epochs. All loss terms were modeled as mean square errors. In all trials,
data generation took approximately 1 second. In Tables 14 and 15 we summarize results of the tests with
x0, y0 ∈ [−2, 2]. In particular, results of Table 15 are obtained with physics-informed “jump” forward flow
map estimators. Similarly, Tables 16 and 17 summarize results with x0 ∈ [−1, 3] and y0 ∈ [−2, 2], with and
without PINN.

It is seen that the “jump” flow map estimator is consistent and relatively accurate even without the
PINN. When we use a PINN, the accuracy almost doubles, but training takes about four times as long.
Some additional tests (data not shown here) indicated that increasing the number of collocation points Nc

did not, in general, further improve accuracy, but did increase the training time. For visualization, in figure
30 we plot the validation data and corresponding neural net predictions from one trial of each region of
initial conditions.

Inverse “jump” flow map estimator results We conducted one set of tests without the PINN, and another
with the PINN usingNc = 5000 total collocation points. When we used the PINN, we kept a constant scalar
penalty weight of {µE} ≡ 1.0, and randomly selected collocation points according to (26) with Emax = 10
iteration/epochs. Latin hypercube sampling created many outliers in the collocation data. We sought to blunt

41

Plain neural net (no PINN)
trial Nd Nv training time RMSE NRMSE

1 2512 1285 123 s 2.74 e–03 5.10 e–04
2 2485 1228 122 s 4.45 e–03 8.07 e–04
3 2579 1213 156 s 5.37 e–03 9.89 e–04
4 2568 1249 110 s 4.13 e–03 7.53 e–04
5 2654 1191 100 s 4.24 e–03 8.09 e–04

mean 2560 1223 122 s 4.17 e–03 7.74 e–04
SD 66 36 21 s 9.44 e–04 1.72 e–04

Table 16: Accuracy and training speed of a plain neural net for approximating the forward “jump” flow map
of the Van der Pol oscillator (31) with x0, y0 ∈ [−1, 3]× [−2, 2].

PINN with Nc = 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2512 1285 428 s 2.35 e–03 4.38 e–04
2 2485 1228 491 s 1.95 e–03 3.54 e–04
3 2579 1213 508 s 3.17 e–03 5.84 e–04
4 2568 1249 518 s 2.76 e–03 5.03 e–04
5 2654 1191 559 s 2.52 e–03 4.81 e–04

mean 2560 1223 501 s 2.55 e–03 4.72 e–04
SD 66 36 48 s 4.55 e–04 8.47 e–05

Table 17: Accuracy and training speed of a PINN for approximating the forward “jump” flow map of the
Van der Pol oscillator (31) with x0, y0 ∈ [−1, 3]× [−2, 2].

the impact of these outliers by using a logcosh loss on the inverse flow map penalty term, since logcosh can
be less sensitive to outliers than MSE [19]. For the data loss we still used MSE. In Tables 18 and 19 we
summarize results of the tests we performed with x0, y0 ∈ [−2, 2]. In particular, Table 19 refers to case
where we use a physics-informed neural network (residual of the forward flow map equation added in the
cost function). In Tables 20 and 21 we summarize the same kind of results, but with initial conditions
x0 ∈ [−1, 3] and y0 ∈ [−2, 2].

These results have two clear implications. First, that the inverse flow map is much harder to approximate
than the forward flow map, as we expected. It is likely that we need more and better data, and perhaps
a differently structered neural net. Second, the physics-informed neural net contributes nothing in these
implementations. Moreover, when we trained the without using the PINN, it was still possible to compute
the constraint loss term (37). If we chose to do this extra computation, we saw that for the forward map the
constraint loss decreased naturally as we optimized with respect to the data only. However, in the case of the
inverse map, the constraint loss was largely unaffected by minimizing the data loss. This indicates that there
is a problem with the data generation algorithm and choices of hyperparameters. As discussed previously,
the underlying cause here could be outliers in the collocation points. In the next quarter we will take steps
to understand this behavior and experiment with different solutions.

“Jump” flow map estimator with bidirectional autoencoder results We conducted one set of tests of
the bidirectional autoencoder sketched in Figure 29 using no PINN, and another using a PINN enforcing the
forward flow map equations (13) only, with Nc = 5000 collocation points. We didn’t go through the trouble

42

Figure 30: Validation data and corresponding neural net reconstructions by a PINN which approximates
the forward “jump” flow map of the Van der Pol oscillator (31). Left: x0, y0 ∈ [−2, 2] × [−2, 2] from
the model trained in trial 1 of Table 15, for which there were 96 successful validation integrations. Right:
x0, y0 ∈ [−1, 3]× [−2, 2] from the model trained in trial 1 of Table 17, for which there were 100 successful
validation integrations.

Plain neural net (no PINN) with Nc = 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2492 1199 108 s 3.96 e–02 1.01 e–02
2 2506 1223 114 s 3.02 e–02 7.69 e–03
3 2523 1218 127 s 8.29 e–02 2.19 e–02
4 2570 1262 76 s 5.20 e–02 1.39 e–02
5 2622 1150 83 s 4.41 e–02 1.14 e–02

mean 2543 1210 102 s 4.98 e–02 1.30 e–02
SD 53 41 21 s 2.01 e–02 5.46 e–03

Table 18: Accuracy and training speed of a plain neural net for approximating the inverse “jump” flow map
of the Van der Pol oscillator (31) with x0, y0 ∈ [−2, 2]× [−2, 2].

of testing it extensively with the inverse flow map PINN, since a few initial tests already indicated this was
ineffective. When using the PINN we kept a constant scalar penalty weight µE = 1, and randomly selected
collocation points according to (26) with Emax = 10. For the tests with x0, y0 ∈ [−2, 2] × [−2, 2] we used
λ1 = 10−1, λ2 = 10−2, and λ3 = 10−2. For the tests with x0, y0 ∈ [−1, 3] × [−2, 2] we used λ1 = 10−3,
λ2 = 10−4, and λ3 = 10−4. Note that λ1 is the weight on the inverse loss term in the cost function (38).
Similarly, λ2 and λ3 are the weights on the x0 and x autoencoding terms, respectively. In Tables 22 and 23
we summarize the results of some of our tests with x0, y0 ∈ [−2, 2]. Tables 24 and 25 summarize similar
results we obtained with x0 ∈ [−1, 3], y0 ∈ [−2, 2]. These tests show some success of the bidirectional
autoencoder we proposed. We expect that modifying the training process so that only the inverse flow map
estimator is trained with the autoencoding terms will improve both accuracy and efficiency. This scheme
would leave the more accurate forward estimator (with or without the PINN) intact, and train the inverse
estimator to be the inverse of the forward estimator. This change will require some rewriting of the code to
implement.

43

PINN with Nc = 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2492 1199 483 s 4.65 e–02 1.18 e–02
2 2506 1223 308 s 3.32 e–02 8.44 e–03
3 2523 1218 355 s 1.17 e–01 3.11 e–02
4 2570 1262 361 s 3.15 e–02 8.41 e–03
5 2622 1150 528 s 4.83 e–02 1.25 e–02

mean 2543 1210 407 s 5.53 e–02 1.45 e–02
SD 53 41 94 s 3.53 e–02 9.50 e–03

Table 19: Accuracy and training speed of a PINN for approximating the inverse “jump” flow map of the Van
der Pol oscillator (31) with x0, y0 ∈ [−2, 2]× [−2, 2].

Plain neural net (no PINN)
trial Nd Nv training time RMSE NRMSE

1 2512 1285 41 s 2.78 e–01 7.09 e–02
2 2485 1228 33 s 3.26 e–01 8.30 e–02
3 2579 1213 28 s 4.51 e–01 1.19 e–01
4 2568 1249 24 s 3.75 e–01 1.00 e–01
5 2654 1191 36 s 2.78 e–01 7.19 e–02

mean 2560 1223 32 s 3.42 e–01 8.90 e–02
SD 66 36 7 s 7.32 e–02 2.05 e–02

Table 20: Accuracy and training speed of a plain neural net for approximating the inverse “jump” flow map
of the Van der Pol oscillator (31) with x0, y0 ∈ [−1, 3]× [−2, 2].

Forward “step” flow map estimator results In this section we present numerical results of the feed-
forward “step” flow map estimator without PINN (see section 2.2.9). In Table 26 contains results of the
tests with x0, y0 ∈ [−2, 2], and Table 27 we summarize the results we obtained for x0 ∈ [−1, 3], y0 ∈
[−2, 2]. The results we obtained with plain feed-forward deep neural networks and “step” forward flow
map estimators are quite good: we get more accurate models in less time than when we train the full “jump”
forward flow map. We expect that the inverse flow map will also be somewhat more accurate than the
“jump” version, once we implement it successfully. For visualization, in Figure 31 we plot the validation
data and corresponding neural net predictions from one trial of each region of initial conditions.

2.3 Numerical methods to solve data-driven PDF equations

The physics-informed neural network technique we studied in section 2.2.6 can be viewed as a data-driven
discrete least squares approach to solve the Liouville equation. In addition to such technique, we studied
direct methods to solve reduced-order PDF equations, i.e., PDF equations for quantities of interest. To
illustrate the methodology, consider again the n-dimensional system (11). We have seen that the Liouville
equation (15) describes the exact dynamics of the joint PDF of state variables x(t). In most cases, however,
we are only interested in the dynamics of a real-valued phase space function

u(x) = Rn → R (observable). (44)

In models of disease propagation, this phase space function may be represented by the population of
susceptible individuals, e.g., by the first component of a nonlinear epidemic model. In this case we set

44

PINN with Nc = 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2512 1285 164 s 3.39 e–01 8.62 e–02
2 2485 1228 123 s 3.20 e–01 8.15 e–02
3 2579 1213 205 s 5.17 e–01 1.37 e–01
4 2568 1249 131 s 3.40 e–01 9.06 e–02
5 2654 1191 165 s 2.66 e–01 6.87 e–02

mean 2560 1223 158 s 3.56 e–01 9.28 e–02
SD 66 36 33 s 9.47 e–02 2.60 e–02

Table 21: Accuracy and training speed of a PINN for approximating the inverse “jump” flow map of the Van
der Pol oscillator (31) with x0, y0 ∈ [−1, 3]× [−2, 2].

Vanilla neural net (no PINN)
trial Nd Nv training time NRMSE (forward) NRMSE (inverse)

1 2492 1199 328 s 8.63 e–04 7.47 e–03
2 2506 1223 334 s 6.33 e–04 8.75 e–03
3 2523 1218 310 s 7.87 e–04 1.96 e–02
4 2570 1262 314 s 8.24 e–04 5.43 e–03
5 2622 1150 321 s 7.81 e–04 8.25 e–03

mean 2543 1210 321 s 7.78 e–04 9.90 e–03
SD 53 41 10 s 8.73 e–05 5.57 e–03

Table 22: Accuracy and training speed of a pair of plain feed-forward neural nets for approximating the
forward and inverse “jump” flow maps of the Van der Pol oscillator (31) with x0, y0 ∈ [−2, 2] × [−2, 2],
trained as a bidirectional autoencoder.

u(x(t)) = x1(t). The probability density function of such observable can be represented as

p(z, t) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

δ (z − u(x)) p(x, t)dx, (45)

where δ(·) is the Dirac’s delta function (see [14, 25, 21]) and z is a random variable representing the value
of u(x(t)). Multiplying the Liouville equation (15) by δ (z − u(x)) and integrating over all phase variables
yields

∂p(z, t)

∂t
+

∫ ∞
−∞
· · ·
∫ ∞
−∞

eia(z−u(x))∇ · (G(x)p(x, t))xda = 0. (46)

Here we employed the Fourier representation of the Dirac delta function. In general, equation (46) is un-
closed in the sense that there are terms at the right hand side that cannot be computed based on p(z, t) alone.
If we set u(x(t)) = xk(t), i.e., we are interested in the k-th component of the dynamical system (11) then

45

PINN with Nc = 5000 total forward collocation points
trial Nd Nv training time NRMSE (forward) NRMSE (inverse)

1 2492 1199 912 s 4.40 e–04 7.20 e–03
2 2506 1223 963 s 3.53 e–04 8.47 e–03
3 2523 1218 885 s 4.21 e–04 1.94 e–02
4 2570 1262 949 s 3.59 e–04 4.50 e–03
5 2622 1150 764 s 6.32 e–04 7.89 e–03

mean 2543 1210 895 s 4.41 e–04 9.49 e–03
SD 53 41 79 s 1.13 e–04 5.74 e–03

Table 23: Accuracy and training speed of a pair of neural nets for approximating the simultaneously forward
and inverse “jump” flow maps of the Van der Pol oscillator (31) with x0, y0 ∈ [−2, 2] × [−2, 2], trained as
a bidirectional autoencoder. The neural net approximating the forward map is pre-trained as a plain neural
net (no PINN); during the joint training we add in the PDE constraint penalty term (37).

Vanilla neural net (no PINN)
trial Nd Nv training time NRMSE (forward) NRMSE (inverse)

1 2512 1285 265 s 9.31 e–04 7.55 e–02
2 2485 1228 232 s 9.05 e–04 8.38 e–02
3 2579 1213 222 s 6.83 e–04 1.36 e–01
4 2568 1249 217 s 1.53 e–03 7.42 e–02
5 2654 1191 260 s 9.30 e–04 6.76 e–02

mean 2560 1223 239 s 9.96 e–04 8.74 e–02
SD 66 36 22 s 3.16 e–04 2.78 e–02

Table 24: Accuracy and training speed of a pair of plain neural nets for approximating the forward and
inverse “jump” flow maps of the Van der Pol oscillator (31) with x0, y0 ∈ [−1, 3] × [−2, 2], trained as a
bidirectional autoencoder. Training times include the pre-training of both separate neural nets and the joint
training.

(46) reduces to3

∂p(xk, t)

∂t
+

∫ ∞
−∞
· · ·
∫ ∞
−∞

∂

∂xk
(Gk(x)p(x, t)) dx1 . . . dxk−1dxk+1 . . . dxn = 0. (47)

The specific form of this equation depends on the underlying dynamical system, i.e., on the nonlinear map
G(x). Let us provide a simple example.

Example 2.1 (Lorenz-96 system) Consider the Lorenz-96 dynamical system

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F for i = 1, 2, . . . , n, (48)

where x0 = xd and x1 = xn+1. The associated Liouville equation is
3By using integration by parts and assuming that the joint PDF p(x, t) decays to zero sufficiently fast at infinity we obtain∫ ∞

−∞
· · ·

∫ ∞
−∞
∇ · (G(x)p(x, t)) dx1 . . . dxk−1dxk+1 . . . dxn =∫ ∞

−∞
· · ·

∫ ∞
−∞

∂

∂xk
(Gk(x)p(x, t)) dx1 . . . dxk−1dxk+1 . . . dxn.

46

PINN with Nc = 5000 total forward collocation points
trial Nd Nv training time NRMSE (forward) NRMSE (inverse)

1 2512 1285 602 s 7.25 e–04 7.16 e–02
2 2485 1228 492 s 5.87 e–04 7.80 e–02
3 2579 1213 582 s 6.12 e–04 1.34 e–01
4 2568 1249 763 s 5.66 e–04 6.64 e–02
5 2654 1191 717 s 5.42 e–04 6.36 e–02

mean 2560 1223 631 s 6.06 e–04 8.27 e–02
SD 66 36 109 s 7.12 e–05 2.92 e–02

Table 25: Accuracy and training speed of a pair of neural nets for approximating the forward and inverse
“jump” flow maps of the Van der Pol oscillator (31) with x0, y0 ∈ [−1, 3]× [−2, 2], trained as a bidirectional
autoencoder. The neural net approximating the forward map is pre-trained as a plain neural net (no PINN);
during the joint training we add in the PDE constraint penalty term (37). Training times include the pre-
training of both separate neural nets and the joint training.

Vanilla neural net (no PINN)
trial Nd Nv training time RMSE NRMSE

1 4214 2058 52 s 1.81 e–03 3.66 e–04
2 4018 1813 38 s 2.01 e–03 3.91 e–04
3 3675 2107 21 s 2.53 e–03 4.57 e–04
4 4214 1911 27 s 3.10 e–03 5.85 e–04
5 3626 1911 27 s 1.66 e–03 2.97 e–04

mean 3959 1960 33 s 2.22 e–03 4.19 e–04
SD 285 120 12 s 5.91 e–04 1.09 e–04

Table 26: Accuracy and training time of a plain feed-forward neural net for approximating the forward
“step” flow map of the Van der Pol oscillator (31) with x0, y0 ∈ [−2, 2]× [−2, 2].

∂p(x, t)

∂t
= −

d∑
i=1

∂

∂xi

[(
(xi+1 − xi−2)xi−1 − xi + F

)
p(x, t)

]
. (49)

Suppose we are interested in the PDF of the fifth component of the system, i.e., set u(x(t)) = x5(t) in
equation (44). By integrating (49) with respect to x1, . . . , x4, x6, . . . , xn and assuming that p(x, t) decays
fast enough at infinity, we obtain

∂p(x5, t)

∂t
=

∂

∂x5

[(
x5 − F +

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(x3 − x6)x4p(x3, x4, x5, x6, t)dx3dx4dx6

]
. (50)

From this equation we see that the evolution of p(x5, t) depends on an integral involving p(x3, x4, x5, x6, t).
In other words, to solve an equation of this nature, we must find a way to approximate the term involving
p(x3, x4, x5, x6, t). To this end, it is convenient to first transform the integral at the right hand side by using
conditional probabilities. Specifically, we can write the joint PDF of x3(t), x4(t), x5(t), and x6(t) at time t
as

p(x3, x4, x5, x6, t) = p(x5, t)p(x3, x4, x6|x5, t), (51)

47

Vanilla neural net (no PINN)
trial Nd Nv training time RMSE NRMSE

1 4214 2058 50 s 1.81 e–03 3.35 e–04
2 4018 1813 38 s 4.71 e–03 8.80 e–04
3 3724 2107 38 s 2.14 e–03 4.05 e–04
4 4018 1862 54 s 1.80 e–03 3.38 e–04
5 3577 1911 32 s 2.45 e–03 4.58 e–04

mean 3910 1950 42 s 2.58 e–03 4.83 e–04
SD 256 127 9 s 1.22 e–03 2.28 e–04

Table 27: Accuracy and training time of a plain feed-forward neural net for approximating the forward
“step” flow map of the Van der Pol oscillator (31) with x0, y0 ∈ [−1, 3]× [−2, 2].

Figure 31: Validation data and corresponding neural net reconstructions by a plain neural net which approx-
imates the forward “step” flow map of the Van der Pol oscillator (31). Left: x0, y0 ∈ [−2, 2]× [−2, 2] from
the model trained in trial 1 of Table 26, for which there were 42/50 successful validation integrations. Right:
x0, y0 ∈ [−1, 3]× [−2, 2] from the model trained in trial 1 of Table 27, for which there were (coincidentally
also) 42/50 successful validation integrations.

where p(x3, x4, x6|x5, t) is the conditional probability density of x3(t), x4(t), and x6(t) given x1(t) [2, 21].
A substitution of (51) into (50) yields

∂p(x5, t)

∂t
=

∂

∂x5

[(
x5 − F + E

{
(x3 − x6)x4|x5, t

})
p(x5, t)

]
, (52)

where
E {(x3 − x6)x4|x5} =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

(x3 − x6)x4p(x3, x4, x6|x5, t)dx3dx4dx6 (53)

is the conditional expectation of the random variable (x3(t)− x6(t))x4(t) given a realization of the random
variable x5(t). Note that both random variables are evaluated at the same time t.

Example 2.2 (Divergence-free system) Consider the familiar example we introduced in section 2.2.1, and
hereafter rewritten for convenience {

ẋ = 2xy − 1,

ẏ = −x2 − y2 + µ.
(54)

48

10 samples 100 samples 1000 samples

m
ov

in
g

av
er

ag
e

-6 -3 0 3 6
-5

0

5

10

-6 -3 0 3 6
-5

0

5

10

-6 -3 0 3 6
-5

0

5

10
sm

oo
th

in
g

sp
lin

es

-6 -3 0 3 6
-5

0

5

10

-6 -3 0 3 6
-5

0

5

10

-6 -3 0 3 6
-5

0

5

10

Figure 32: Numerical estimation of the conditional expectation (63) for different number of samples of (61).
Shown are results obtained with moving averages (first row) and cubic smoothing splines (second row). It
is seen that both methods converge to the correct conditional expectation in the active region as we increase
the number of samples.

The Liouville equation associated with (54) is

∂p(x, y, t)

∂t
= − ∂

∂x

(
(2xy − 1)p(x, y, t)

)
− ∂

∂y

(
(−x2 − y2 + µ)p(x, y, t)

)
. (55)

As before, we set µ = 5. We chose the initial PDF p0(x, y) to be the product of two independent Gaussians
with means µx = µy = 0.75 and variances σ2

x = σ2
y = 0.25. Suppose we are interested in the PDF of the

first component of the system, i.e., x(t). To obtain a reduced-order PDF equation for p(x, t), integrate (55)
with respect to y. This yields,

∂p(x, t)

∂t
= − ∂

∂x

(
2x

∫ ∞
−∞

yp(x, y, t)dy − p(x, t)
)
. (56)

We can rewrite the joint PDF of x and y at time t as p(x, y, t) = p(x, t)p(y|x, t). This allows us to express
the unclosed term in (56) as a conditional expectation∫ ∞

−∞
yp(x, y, t)dy = p(x, t)

∫ ∞
−∞

yp(y|x, t)dy = p(x, t)E{y(t)|x(t)}. (57)

Equation (56) can now be rewritten in terms of E{y|x, t}

∂p(x, t)

∂t
= − ∂

∂x
(2xp(x, t)E{y(t)|x(t)} − p(x, t)) . (58)

The evolution equation for p(x, t) is unclosed because it contains terms that depend on both x and y. In
order to remedy this problem, approximation of the unclosed term is necessary. This can be performed using
regression methods (as in section 2.3) or neural networks (as in Section 2.3.2).

49

Remark 2.6 More generally, if we are interested in the PDF of k-th component of the system (11), then
we need to express the right hand side of (47) in terms of conditional expectations, and estimate such
expectations from data. If Gk(x) is in the form of a sum of separable functions, i.e.,

Gk(x) =

r∑
l=1

n∏
j=1

f jkl(xj), (59)

then we can explicitly write (47) as

∂p(xk, t)

∂t
+

∂

∂xk

(
p(xk, t)

r∑
l=1

fkkl(xk)E
{
f1
kl(x1)...fk−1

kl (xk−1)fk+1
kl (xk+1)...fnkl(xn)

∣∣∣xk}
)

= 0. (60)

Computing conditional expectations from data or sample trajectories is a key step in determining accurate
closure approximations of reduced-order PDF equations. A major challenge to fitting a conditional expec-
tation is ensuring accuracy and stability. More importantly, the estimator must be flexible and effective for
a wide range of numerical applications.

2.3.1 Estimating conditional expectations from data: smoothing splines and moving averages

In this section we present two different approaches to estimate conditional expectations from data based on
moving averages and smoothing splines. The moving average estimate is obtained by first sorting the data
into bins and then computing the average within each bin. With such averages available, we can construct
a smooth interpolant using the average value within each bin. Some factors that affect the bin average ap-
proximation are the bin size (the number of samples in each bin) and the interpolation method used in the
final step. Another approach to estimate conditional expectations uses smoothing splines. This approach
seeks to minimize a penalized sum of squares. A smoothing parameter determines the balance between
smoothness and goodness-of-fit in the least-squares sense [6]. The choice of smoothing parameter is critical
to the accuracy of the results. Specifying the smoothing parameter a priori is generally yields poor esti-
mates [22]. Instead, cross-validation and maximum likelihood estimators can guide the choice the optimal
smoothing value for the data set [26]. Such methods can be computationally intensive, especially when
the spline estimate is performed at each time step. Other techniques to compute conditional expectations
can leverage on recent developments on deep learning [10]. In Figure 32 we compare the performance of
the moving average and smoothing splines approaches in approximating the conditional expectation of two
jointly Gaussian random variables. Specifically, we consider the joint distribution

p(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(x1 − µ1)

σ2
1

(x2 − µ2)

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2)

])
(61)

with parameters ρ = 3/4, µ1 = 0, µ2 = 2, σ1 = 1 σ2 = 2. As is well known [21], the conditional
expectation of x2 given x1 can be expressed as4

E{x2|x1} = µ2 + ρ
σ2

σ1
(x1 − µ1) = 2 +

3

2
x1. (63)

4Given two random variables with joint PDF p(x1, x2), the conditional expectation of x2 given x1 is defined as

E{x2|x1} =
∫ ∞
−∞

x2p(x2|x1)dx2 =
1

p(x1)

∫ ∞
−∞

x2p(x1, x2)dx2, (62)

where p(x1) is the marginal of p(x1, x2) with respect to x2.

50

Such conditional expectation is plotted in Figure 32 (dashed line), together with the plots of the conditional
average estimates we obtain with the moving average and the smoothing spline approaches for different
numbers of samples. It is seen that both methods converge to the correct conditional expectation as we
increase the number of samples. Note, however, that convergence is achieved in regions where the PDF
(61) is not small (see the subsequent Remark 2.8). Both estimators require setting suitable parameters to
compute expectations, e.g., the width of the moving average window in the moving average approach, or
the smoothing parameter in the cubic spline approximant.

Remark 2.7 If the joint PDF of x1 and x2 is not compactly supported, then the conditional expectation
is defined on the whole real line. It is computationally challenging to estimate the expectation (63) in
regions where the joint PDF is very small [4]. At the same time, if we are not interested in rare events (i.e.,
tails of probability densities), then resolving the dynamics in such regions of such small probability is not
needed. This means that if we have available a sufficient number of sample trajectories, we can identify
the active regions where the dynamics are happening with high probability and approximate the conditional
expectation only within such regions [5]. Outside the active regions, we set the expectation equal to zero.

Remark 2.8 If the joint PDF of x1 and x2 is compactly supported, e.g. uniform in the square [0, 1]2,
then the conditional expectation is undefined outside the support of the joint PDF. This means, in principle,
that we are not allowed to set any value for the conditional expectation outside the domain where it exists.
However, a quick look at the structure of the reduced-order PDF equations we are considering, e.g., equation
(60), suggests that the conditional expectation plays the role of a velocity field advecting the reduced-order
PDF. Therefore, setting such velocity vector equal to zero in the regions where the reduced order PDF is
very small or even undefined, does not affect the PDF propagation process. On the other hand, setting the
conditional expectation equal to zero in low- or zero-probability regions greatly simplifies the mathematical
discretization of PDEs in the form (60).

2.3.2 Neural network estimation of conditional expectations

In this section we describe a specific class of feed-forward neural networks, i.e., radial basis networks, to
effectively estimate conditional expectations. Radial basis neural networks have a fixed three-layer archi-
tecture consisting of an input layer, a hidden layer, and an output layer. The relationship between each layer
is depicted in Figure 33.

1. The input layer has as many neurons as there are inputs. For example, if the neural net is used to
approximate the conditional expectation E{y(t)|x(t)} then it takes two inputs: t and x(t). Therefore,
the input layer for this problem consists of two neurons. This layer is also responsible for scaling the
input vector x(t) using input weights.

2. The hidden layer has a variable number of neurons, sayM , each with a center cm form = 1, . . . ,M .
Generally, we choose the number of neurons, M , to be significantly smaller than the number of
training samples used. Each neuron in the hidden layer represents a radial basis function, e.g., a
Gaussian

hm(x, t) = exp

(
−‖x(t)− cm(t)‖2

2b2

)
, (64)

where b is the spread (or variance) of the basis function.

51

Figure 33: Architecture of a radial basis neural network that receives two inputs (i.e., x and t) and returns
one output y(x, t), i.e., the conditional expectation E[x(t)|y(t)].

(a) (b)

Figure 34: Dynamical system (54). (a) An approximation of E{y(t)|x(t)} obtained via methods described
in Section 2.3.1 using 5000 sample trajectories. (b) An approximation of E{y(t)|x(t)} obtained using a
radial basis neural network with 25 neurons in the hidden layer and 500 training samples. The radial basis
network is able to recover the conditional expectation with only 500 samples, whereas the regression method
(a) requires upwards of 5000 samples for the same level of accuracy.

3. The output layer performs a linear mapping from the hidden space to the output space. For example,
if we are interested in representing the conditional expectation of y(t) given x(t) (see equation (58))
then the output layer takes the form

E{y(t)|x(t)} =
M∑
m=1

wmhm(x, t).

The spread of the radial basis neural network, i.e., the parameter b in (64), acts as a smoothing parameter.
A large spread leads to a smooth function approximation, while a small spread allows for more variation
between neurons. For illustration purposes, let we consider the system (54) with random initial condition
distributed as described in Example 2.2. Let us set the spread of our radial basis neural net as b = 1.8.
In Figure 34, we compare the conditional expectation approximation generated via the methods presented
in sections 2.3.1 and 2.3.2 respectively. In most cases, radial basis neural networks require more many
neurons than a comparable feed-forward network or another regression method. However, the trade off is
that radial basis networks often take less time and fewer samples to train. This is demonstrated in Figure
34, were show that our radial basis neural network with 25 neurons requires only 500 sample trajectories to
approximate E{y(t)|x(t)} in (56), while smoothing splines and moving average regression methods require

52

Neurons per layer
10 25 50 100

N
o.

Sa
m

pl
es

10 1 s 1 s 1 s 1 s
50 1 s 2 s 3 s 6 s
100 2 s 4 s 7 s 14 s
500 26 s 55 s 108 s 255 s
750 70 s 143 s 264 s 710 s

Table 28: Training time of a neural net for approximating the unclosed term in (56), depending on the
availability of data.

thousands more samples to achieve the same level of accuracy. The radial basis neural network requires at
least one neuron for each pattern that appears in the training data. For large or unsmooth data sets (i.e. data
that is spiky with steep gradients), radial basis neural networks can become costly to train. This is clearly
demonstrated in Table 28. For this reason, the radial basis networks are appropriate for computing closure
approximations if and only if the conditional expectation being approximated is relatively smooth, which is
often the case.

Training the neural net To initialize training of the neural net, we need sample trajectories, e.g., of the
system (54). Start by drawing P samples of the initial condition from the initial pdf, p0(x, y). Next, we
evolve each initial condition samples forward in time using a one-step method such as the Runge-Kutta
scheme with time step ∆t. This yields N = P/∆t data points to feed into the neural network for training.
We feed N input vectors to the network along with N target values for y. For the ith sample in the training
set, xi = (xi, ti) are the input values and yi is the target output. The algorithm iteratively creates a radial
basis network one neuron at a time. Neurons are added to the network until an error tolerance is met or
a user-defined number of neurons has been reached. We start with 0 neurons. The network is simulated,
error targets are checked. If the error target is met, the algorithm stops, otherwise new neurons are added
iteratively. Once each neuron in the network has been assigned input weights we need to adjust output
weights to minimize error. Given M centers, we define the transfer matrix ΦC as

ΦC
ij = exp

(
−||xi − cj ||

2
2

2b2

)
.

The transfer matrix satisfies

ΦCw + β = y, (65)

where y is the target vector, β is the bias vector (to be found), and w is the weight vector (to be found).
Solving the least squares problem 65 yields the desired output weights and biases. We seek a global optimal
approximation to the training data in the minimum mean square error (MSE) sense.

MSE =
1

N

N∑
i=1

∥∥∥∥∥yi −
M∑
m=1

wmhm(xi, ti)

∥∥∥∥∥
2

.

The mean squared error of the network approximation is checked, and the algorithm will exit if the error
target is met. Otherwise the next neuron is added. This process is repeated until the error target is met or the
maximum number of neurons is reached.

53

-10 0 10 20
-50

0

50

100

-10 0 10 20
-50

0

50

100

-10 0 10 20
-50

0

50

100

Figure 35: Data-driven smoothing spline estimation of the conditional expectations arising in the study of
the Lorenz-96 dynamical system (48).

(a) (b)

-10 -5 0 5 10 15
0

0.2

0.4

0.6

-10 -5 0 5 10 15
0

0.2

0.4

0.6

-10 -5 0 5 10 15
0

0.2

0.4

0.6

Figure 36: Lorenz-96 dynamical system. (a) Accurate kernel density estimate of p5(x5, t) based on 25000
sample trajectories. (b) Numerical solution of (50) obtained by estimating E

[(
x3(t)− x6(t)

)
x4(t)|x5(t)

]
with 5000 sample trajectories.

2.3.3 Numerical results

Lorenz-96 system In Figure 35, we summarize the results we obtained by applying the smoothing spline
conditional expectation estimator to the Lorenz-96 model introduced in (48). This system has polynomial-
type nonlinearities. The quantity of interest, x5, is indicated in the x-axis of the plots. When using this
approach, we must be careful to provide enough samples for the estimator to adequately capture the support
of the underlying PDF. If we do not have enough samples, the estimator will not be consistent with the true
conditional expectation. In Figure 36 we plot the PDF dynamics we obtain by solving (50) with an accurate
Fourier spectral method. The conditional expectation is estimated based on 5000 sample trajectories.

Divergence-free system (54) In Figure 37, we plot the PDF dynamics we obtained by sampling (54), and
then solving (58) with a Fourier spectral method. The conditional expectation here is estimated based on
the moving average regression method detailed in section 2.3.1 and 5000 sample trajectories. Similarly, in
Figure 38, we plot the PDF dynamics we obtained by solving (58) with the conditional expectation estimated
using a radial basis neural network and M = 25 neurons in the hidden layer. The network was trained with

54

(a) (b)

Figure 37: Divergence-free dynamical system (54). (a) Accurate kernel density estimate of p(x, t) based
on 30000 sample trajectories. (b) Numerical solution of (58) obtained by estimating E{y(t)|x(t)} using the
moving average regression method, as outlined in section 2.3.1.

500 sample trajectories, i.e., an order of magnitude less than the moving average case.
In Table 29 we summarize L2 errors between the benchmark reduced order PDF p(x, t) at t = 0.5 and the
PDF we obtained from the reduced order equation (58), with the conditional expectation computed by using
the radial basis neural network. Specifically, we show results as a function of the number of neurons of the
hidden layer and the number of samples used to train the neural network approximating E{y(t)|x(t)}.

2.4 Applications of data-driven optimal control strategies

As we anticipated in the quarter-by-quarter breakdown of the proposed research activities, in Q1 we studied
several nonlinear models involving swarms of attacking/defending drones, as well as disease propagation
models on random networks of interacting individuals. The purpose of such study was to identify two
interesting systems which we could build upon to test the proposed data-driven optimal control architecture.
Hereafter, we describe such systems in detail.

2.4.1 Swarm of attacking/defending agents

In this section we describe a dynamical model for planning the motion of a swarm of autonomous vehicles
(defenders) to protect a High Value Unit (HVU) which is under attack by a swarm of autonomous agents
(attackers). The core of the model was developed in a recent paper [27] on modeling combat situations with
multiple heterogeneous agents and parameter uncertainties. The goal is to optimally protect a HVU from
multiple incoming attackers. The HVU can be a stationary unit, such as a base or population center, or
a moving unit such as an aircraft carrier. The attackers are unmanned vehicles following automatic target
tracking towards the HVU while performing basic obstacle avoidance around defenders. It is assumed
that attacker fire is directed entirely towards the HVU with no fire to spare for self-defense. A swarm of

55

(a) (b)

Figure 38: Divergence-free dynamical system (54). (a) Accurate kernel density estimate of p(x, t) based on
30000 sample trajectories. (b) Numerical solution of (56) obtained by estimating E [y|x, t] using a radial
basis neural network trained with 500 sample trajectories.

defenders is dispatched to protect the HVU at time t = 0. The single-minded focus of the attacker means
that the survival of the defenders is not in danger, however the goal is to minimize the probability that the
HVU is destroyed. Figure 39 diagrams the attrition interactions among HVU, attackers and defenders.

Figure 39: Interception of HVU-focused attack. dk,lx (xk(t),yl(t)) is the damage rate of the k-th defender
against the l-th attacker; dl,0y (yl(t),x0(t)) is the damage rate of the l-th attacker against the HVU.

Attacker and defender dynamics Each of theK defenders are modeled as Dubin’s vehicle with dynamics

ẋk(t) =

ẋk,1(t)
ẋk,2(t)
ẋk,3(t)

 =

vD sin(xk,3(t))
vD cos(xk,3(t))

uk(t)

 = fk(xk(t),uk(t)), k = 1, . . . ,K (66)

56

Neurons per layer
10 25 50 100

N
o.

Sa
m

pl
es

10 7.81 e–02 3.84 e–02 4.00 e–02 3.33 e–01
50 1.66 e–02 1.54 e–02 2.28 e–02 5.36 e–02
100 1.66 e–02 2.07 e–03 3.04 e–03 4.13 e–02
500 1.35 e–01 4.01 e–02 6.4 e–02 4.43 e–02
1000 4.19 e–02 4.94 e–02 4.77 e–02 4.35 e–02

Table 29: Divergence-free dynamical system (54). L2 errors between the benchmark reduced order PDF
p(x, t) at t = 0.5 and the one obtained from the reduced order equation (58), with E{y(t)|x(t)} estimated
using radial basis neural networks. Specifically, we plot the error versus the number of neurons of the hidden
layer and the number of samples used to train the neural network.

where vD is the modulus of the defender velocity. The control uk(t) ∈ R is subject to the constraint umin ≤
uk(t) ≤ umax. Each of the L attackers have deterministic dynamics but with uncertainty stemming from
unknown initial locations and unknown velocities. We group all uncertain parameters in the attacking swarm
into a vector ω, and assume that it has a known joint distribution φ(ω). Attackers move with uncertain but
constant velocity and a heading determined by a weighted combination of their desire to evade each defender
but also to track the HVU. These dynamics are expressed as:

ẏl =

(
ẏl,1(t,ω)
ẏl,2(t,ω)

)
= vA

H l(Rl(t,ω))

‖H l(Rl(t,ω))‖
, (67)

whereH l is a two-dimensional heading vector

H l(Rl(t,ω)) =

(
H l

1(Rl(t,ω))
H l

2(Rl(t,ω))

)
, (68)

and Rl is the vector of relative positions between attacker yl(t,ω) and the defenders at xk, k = 1, . . . ,K
defined as

Rl(t,ω) =
(
Rl,0(t,ω),Rl,1(t,ω), . . . ,Rl,K(t,ω)

)
, Rl,k(t,ω) =

(
yl,1(t,ω)− xk,1(t)
yl,2(t,ω)− xk,2(t)

)
. (69)

The heading vector for each attacker is determined by averaging the attacker’s conflicting impulses. On the
one hand, the attacker is endeavoring to track the HVU, and it is being herded away through avoidance of
the defenders. This averaging is given by the sum

H l(Rl) =

K∑
k=0

αl,k
(
‖Rl,k‖

) Rl,k

‖Rl,k‖
(70)

whereαl,k
(
‖Rl,k‖

)
weights the influence of each agent based on radial distance. When k = 0, αl,k

(
‖Rl,k‖

)
returns a negative value attracting the attacker to the HVU, and when k = 1, . . . ,K, αl,k

(
‖Rl,k‖

)
returns a

positive value repelling the attacker from the defenders. These values are set, for k = 1, . . . ,K, asα
l,0
(
‖Rl,0‖

)
= − 1

σ0
e
−‖Rl,0‖

σ0

αl,k
(
‖Rl,k‖

)
= 1

σk
e
−‖Rl,k‖
σk .

(71)

57

Figure 40: Averaged herding heading example for one attacker and two defenders

System attrition The damage rate of the k-th defender against the l-th attacker is defined by

dk,lx (xk(t),yl(t,ω)) = λD

[
1 +

[
θk,l
]2

3

]−3/2

· Φ
(
−rk,l(t)
σD

)
(72)

where rk,l(t) is the distance between the k-th defender and the l-th attacker and Φ is the cumulative Normal
distribution function. The damage rate of the l-th attacker against the HVU is defined by

dl,0y (yl(t,ω),x0) = λAΦ

(
−rl,0(t)

σA

)
, (73)

where, as with the defenders rl,0(t), is the distance between the l-th attacker and the HVU while λA and
σA are constants that calibrate intensity and range. Based on damage rates, it can be shown [27] that the
probability of survival of the l-th attacker satisfies differential equation

dQl(t,ω)

dt
= −Ql(t,ω)

K∑
k=1

dk,lx (xk(t),yl(t,ω)) (74)

with initial condition Ql(0,ω) = 1, while the probability of survival of the HVU is obtained by solving

dP0(t,ω)

dt
= −P0(t,ω)

L∑
l=1

Ql(t,ω)dl,0y (yl(t,ω),x0), (75)

with P0(0,ω) = 1. The following control problem yields optimal defenders’ paths, maximizing the proba-
bility of survival of the HVU.

HVU attack/interception problem For K defenders and L attackers with uncertainty prescribed by the
joint probability density function φ, determine the control u : [0, tf] → U ∈ RK that maximizes the

58

Variable Description
S Proportion of population that is healthy and susceptible to HIV
X Proportion of population infected with HIV
R Proportion of population that is protected from HIV
si Probability that vertex i is susceptible
xi Probability that vertex i is infected
ri Probability that vertex i is protected

Parameter Description
β Probability that transmission will occur between two connected individuals
γ Probability that an infected individual will recover
p Occupation probability
pk Degree distribution
K Mean degree

Table 30: Definition of all phase variables and parameters appearing in the nonlinear system (78).

probability of survival, i.e., minimizes

J =

∫
Ω

[1− P0(tf ,ω)]φ(ω)dω

subject to 

ẋk(t) = fk(xk(t), uk(t)), xk(0) = xk0,

ẏl(t,ω) = gl(x1(t), . . . ,xK(t),yl(t,ω)), yl(0,ω) = γl(ω),

Q̇l(t,ω) = −Ql(t,ω)
K∑
k=1

dk,lx (xk(t),yl(t,ω)), Ql(0,ω) = 1,

Ṗ0(t,ω) = −P0(t,ω)

L∑
l=1

Ql(t,ω)dl,0y (yl(t,ω),x0), P0(0,ω) = 1,

and additional geometric constraints. Here, l = 1, . . . , L (attackers) and k = 1 . . . ,K (defenders).

The HUV attach interception problem is ideal for testing the proposed data-driven optimal control archi-
tecture. In particular, in [27] we were able to generate numerical solutions (in low dimensions) by using the
collocation method. However, our experience shows that as we include more realistic sources of uncertain-
ties, existing state-of-the-art computational control methods fail to produce optimal solutions. The proposed
new schemes can open a new path for solving this type of optimal control problems.

2.4.2 Disease propagation on random networks

We will consider a model to describe and predict HIV/AIDS transmission through a random network of
individuals. The objective is to minimize the probability, xi, that a given individual in the network will be
infected with HIV. The network has n nodes (vertices), representing n indivinuals. Edges between vertices
represent interactions between individuals. The degree of a vertex is the number of edges connected to it.
The degree distribution pk of the graph is an ordered list of vertex degrees. All these quantities are defined
in Table 30. Each individual in the network falls into one of three categories: susceptible, infected, removed.

59

The probability that the vertex i belongs to one of these three categories is governed by the equations

dsi
dt

= −si
n∑
j=1

AijBijxj , (76)

dxi
dt

= si

n∑
j=1

AijBijxj − γxi, (77)

dri
dt

= γxi, (78)

where si + xi + ri = 1, and i = 1, . . . , n. The matrices A and B are known as the adjacency matrix and
the transmission matrix respectively. They are both set to be random. Notice that the evolution of each
component si depends on all components of x, i.e., the system is fully coupled. Similarly, the evolution of
xi and ri depend on all components of x or s. This makes the system (78) too complex to solve exactly in its
full form. Instead, we focus on some vertex (or subset of vertices) of interest and approximate the unclosed
terms using the methods we outlined in section 2.3.

The components of the adjacency matrix are determined by the underlying network model. The structure
of the network has a large impact on the dynamics of disease propogation. For the purposes of this research,
we will employ a configuration network model with a given degree distribution, pk. Hereafter we will
describe several common choices for the degree distribution for a social network.

• Poisson degree distribution The Erdös-Rényi model, otherwise known as a Poisson random graph,
is a network model in which we fix the number of vertices and the occupation probability. Edges be-
tween vertices are present with probability p and absent with probability 1−p. The degree distribution
for this graph is

pk =

(
n− 1

k

)
pk(1− p)n−1−k

where n is the number of vertices on the graph and pk is the probability that a given vertex is connected
to exactly k other vertices.

• Watts-Strogatz graph The Watts-Strogatz model, otherwise known as the small world model, is an
undirected graph with n vertices and nK/2 edges, where K is the mean degree. Edges between
vertices are present with probability p and absent with probability 1 − p. The degree distribution for
this graph is

pk =

min(k−K/2,K/2)∑
n=0

(
K/2

n

)
(1− β)nβK/2−n

(βK/2)k−K/2−n

(k −K/2− n)!
e−βK/2,

where pk is the probability that a given vertex on the graph is connected to exactly k other vertices.

• Exponential degree distribution Exponential random graphs are a popular choice due to their abil-
ity to represent complex structural tendencies that commonly arise in social networks. The degree
distribution for this graph is

pk = (1− e−λ)e−λk,

where λ > 0 is the exponential parameter and pk is the probability that a given vertex is connected to
exactly k other vertices.

60

Figure 41: Sample configurations of a Poisson random graph (left) a Watts-Strogatz random graph (center)
and an exponential random graph (right) with N = 25 vertices. The Poisson and Watts-Strogatz random
graphs were generated with occupation probability p = 0.15. The exponential random graph was generated
with exponential parameter λ = 4.

The components of the transmission matrix, B, are determined as follows

Bij =


0, (i ∨ j) practiced safe sex ∨ (i ∨ j) is protected

∨ (i ∧ j) are susceptible ∨ (i ∧ j) are infected
1− (1− β)η, otherwise

. (79)

Each element, Bij , represents the probability of transmission between vertices i and j. Partner selection is
a complex process with many social, cultural, and behavioural influences. Social nuances can be encoded
in either the adjacency matrix, A, or the transmission matrix B. Characteristics such as partner preference
(heterosexual and homosexual), relationship stability, age difference, and social status can contribute to the
formation of a partnership. Long-term, stable relationships are characterized by high η while short-term,
casual partnerships are characterized by low η. The disease propagation model is initialized with a small
number, c, of infected individuals placed randomly amongst the population. The initial conditions for (78)
are

si(0) = 1− c/n, xi(0) = c/n, ri(0) = 0. (80)

References

[1] M. Abadi, A. Agarwal, and et al. P. Barham.

[2] C. Brennan and D. Venturi. Data-driven closures for stochastic dynamical systems. J. Comput. Phys.,
372:281–298, 2018.

[3] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained opti-
mization. SIAM Journal on Scientific Computing, 16:1190–1208, September 1995.

[4] G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, 2001.

[5] A. J. Chorin and X. Tu. Implicit sampling for particle filters. PNAS, 41:17249–17254, 2009.

[6] P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numerische Mathematik,
31(4):377–403, 1979.

[7] M. Ehrendorfer. The Liouville equation in atmospheric predictability. In Seminar on predictability of
weather and climate, pages 47–81, Shinfield Park, Reading, 2003. ECMWF.

61

[8] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. & Appl.,
31(4):2029–2054, January 2010.

[9] L. Grasedyck and C. Löbbert. Distributed hierarchical svd in the hierarchical tucker format. Numerical
Linear Algebra with Applications, page e2174.

[10] D. Graupe. Deep learning neural networks: design and case studies. World Scientific, 2016.

[11] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer Berlin Heidelberg, 2012.

[12] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner. Solving Ordinary Differential Equations, volume
I - Nonstiff Problems. Springer-Verlag, 2nd edition, 1993.

[13] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python.
http://www.scipy.org/, 2001–.

[14] A. I. Khuri. Applications of Dirac’s delta function in statistics. Int. J. Math. Educ. Sci. Technol.,
35(2):185–195, 2004.

[15] D. Kressner and C. Tobler. Algorithm 941: htucker – a Matlab toolbox for tensors in hierarchical
Tucker format. ACM Transactions on Mathematical Software, 40(3):1–22, 2014.

[16] Solomon Kullback and Richard Leibler. On information and sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951.

[17] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM
J. Matrix Anal. & Appl., 21(4):1253–1278, 2000.

[18] M. J. Mohlencamp and L. Monzón. Trigonometric identities and sums of separable functions. Math.
Intelligencer, 27:65–69, 2005.

[19] Ralph Neuneier and Hans Georg Zimmermann. How to Train Neural Networks, pages 373–423.
Springer Berlin Heidelberg, 1998.

[20] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, 2006.

[21] A. Papoulis. Probability, random variables and stochastic processes. McGraw-Hill, third edition,
1991.

[22] S. B. Pope and R. Gadh. Fitting noisy data using cross-validated cubic smoothing splines. Communi-
cations in Statistics - Simulation and Computation, pages 349–376, 1988.

[23] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part I): data-driven
solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561 [cs.AI], 2017.

[24] D. Venturi. A fully symmetric nonlinear biorthogonal decomposition theory for random fields. Physica
D, 240(4-5):415–425, 2011.

[25] D. Venturi and G. E. Karniadakis. Convolutionless Nakajima-Zwanzig equations for stochastic analysis
in nonlinear dynamical systems. Proc. R. Soc. A, 470(2166):1–20, 2014.

[26] G. Wahba. A comparison of gcv and gml for choosing the smoothing parameter in the generalized
spline smoothing problem. Annals of Statistics, 13(4):1378–1402, 1985.

62

[27] C. Walton, P. Lambrianides, I. Kaminer, J. Royset, and Q. Gong. Optimal motion planning in rapid-fire
combat situations with attacker uncertainty. Naval Research Logistics (NRL), 65:101–119, 2018.

[28] L. Ziegelmeier, M. Kirby, and C. Peterson. Stratifying high-dimensional data based on proximity to
the convex hull boundary. SIAM Review, 59(2):346–365, 2017.

63

