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The sympathy of two pendulum 
clocks: beyond Huygens’ 
observations
Jonatan Peña Ramirez1, Luis Alberto Olvera2, Henk Nijmeijer3 & Joaquin Alvarez1

This paper introduces a modern version of the classical Huygens’ experiment on synchronization of 
pendulum clocks. The version presented here consists of two monumental pendulum clocks—ad hoc 
designed and fabricated—which are coupled through a wooden structure. It is demonstrated that the 
coupled clocks exhibit ‘sympathetic’ motion, i.e. the pendula of the clocks oscillate in consonance 
and in the same direction. Interestingly, when the clocks are synchronized, the common oscillation 
frequency decreases, i.e. the clocks become slow and inaccurate. In order to rigorously explain these 
findings, a mathematical model for the coupled clocks is obtained by using well-established physical 
and mechanical laws and likewise, a theoretical analysis is conducted. Ultimately, the sympathy of 
two monumental pendulum clocks, interacting via a flexible coupling structure, is experimentally, 
numerically, and analytically demonstrated.

In an era when science relied heavily on observation, experimentation, and reflection, the Dutch scientist 
Christiaan Huygens made a serendipitous discovery: two of his recently invented pendulum clocks—which were 
hanging from a common wooden beam placed at the top of two chairs—were showing an ‘odd sympathy’. Namely, 
the pendula of the clocks were oscillating in perfect consonance but in opposite directions, i.e. the clocks were 
synchronized in anti-phase. He reported this odd phenomenon first to R. F. de Sluse, on February 22, 1665 and two 
days later to his father and to a member of the Royal Society of London1,2.

Although at that time Huygens did not have the proper mathematical tools for explaining his observations—
differential calculus had not been invented yet—he managed to find the mechanism responsible for the sympathy 
in his clocks: (the small vibrations of) the wooden bar on which the clocks were hanging.

For some reason, the sympathetic motion of pendulum clocks discovered by Huygens, hereinafter called 
Huygens’ synchronization, did not attract the attention of the scientific community at that time. In fact, a ‘hot 
topic’ in those days was the problem of finding the longitude coordinate at sea. However, in 1739, the English 
clockmaker John Ellicot reported an odd phenomenon: two pendulum clocks placed sideways were interacting 
in such a way that the oscillations of one pendulum clock were quenched3,4. Latter, in 1873, the English astrono-
mer William Ellis, noticed a sympathetic behaviour on two clocks that were placed on a common wooden stand: 
during several consecutive days, the pendula of the clocks were oscillating in harmony such that one pendulum 
was swinging to the left while the other pendulum was swinging to the right. Interestingly, Ellis attempted a ‘net-
work’ experiment using 9 pendulum clocks. In this case, however, the previously observed harmony disappeared5. 
Unfortunately, neither Ellicot nor Ellis made a reference to the work of Huygens.

At the beginning of the 20th century, D.J. Korteweg made the first theoretical attempt to explain Huygens’ 
observations. Specifically, Korteweg derived a linear model, neglecting damping and driving forces in the pen-
dula. With his model, Korteweg envisioned that ‘other kinds of sympathy’ may be possible6. Besides this, the sym-
pathy of coupled clocks was still considered as a fairly difficult problem among scientists and clockmakers at that 
time7. In fact, a Nature paper of 1911, reported: “it is apparently beyond human ingenuity to produce two clocks 
which will go together for one week”8. In fact, the same paper refers to an experiment, due to Mr. R. L. Jones of 
Chester, in which the pendula of a group of clocks were forced to beat ‘in sympathy’ by means of a regulator.

In the last years, Huygens’ synchronization has become a relevant topic among scientists and researchers. By 
designing novel experimental platforms9–13 and/or by conducting theoretical analyzes14–24, further understanding 
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about the exciting phenomenon described by Huygens has been obtained. In particular, the aforementioned stud-
ies somehow convey the same message: the key element in Huygens’ setup of pendulum clocks is the coupling 
structure and its mechanical properties.

Nevertheless, Huygens’ synchronization is still an open problem. This claim may be surprising, specially if one 
considers the fact that the behavior associated to pairs of coupled oscillators has been extensively and exhaus-
tively studied and nowadays, the focus is not on pairs of oscillators but rather in networks of oscillators. Hence, it 
seems necessary to justify the need of further studies regarding Huygens’ synchronization and to clearly establish 
the current challenges. In consonance with this, consider Fig. 1, which presents a schematic representation of 
Huygens’ experiment. The left side of the yellow rectangle shows the two main components namely, the coupling 
structure (orange circle), and the pendulum clocks (blue circle). By adding these two components, one obtains 
the experimental platform used by Huygens25. On the right side of the figure, the ‘key ingredients’ necessary for a 
thorough understanding of Huygens’ synchronization are presented: a proper modelling of the coupling structure 
and a proper model for the pendulum clocks.

Although the design and construction of a mechanical clock is a highly non trivial task, the mathematical 
modelling of the clock can be achieved relatively ‘easy’. In fact, many authors agree that a second order nonlinear 
differential equation suffices for describing the dynamic behaviour of a pendulum clock. Perhaps, some difficul-
ties may arise when modelling the escapement mechanism of the clocks. However, this may be circumvented by 
introducing nonlinear terms describing or rather mimicking the operation of the escapement.

The real challenge about Huygens’ synchronization is ‘enclosed’ in the orange circles in Fig. 1. It should be 
noted that a proper mathematical model has not been derived yet. Current models are an oversimplification of the 
real Huygens’ system, in part because the coupling structure has been assumed to be rigid, see e.g.23,26. However, 
the coupling structure used by Huygens, a wooden beam on the top of two chairs, is in fact a flexible body, which 
necessarily needs to be modeled by using a partial differential equation with suitable boundary conditions. As far 
as is known, such model does not exist in the literature, although there exist preliminary works on this direction, 
see e.g.27,28. Likewise, it is still necessary to determine ‘all’ possible limit solutions, besides synchronous solutions, 
in Huygens’ system of coupled pendulum clocks cf.24.

In this regard, the present contribution aims to add to the current knowledge about Huygens’ synchronization 
phenomenon. In particular, a novel experimental platform, which is reminiscent of Huygens’ synchronization 
experiment, is presented. The platform consists of two monumental clocks, which are mounted on a common 
wooden table. Although preliminary attempts have been done by using either metronomes9–11,29 or small com-
mercial clocks12,30, as far as is known, this is the first time that Huygens’ experiment is reproduced by using 
monumental clocks. Additionally, we have discovered that the oscillation frequency of the synchronized clocks is 
indeed affected. Furthermore, an improved model, or rather a ‘more natural’ model regarding current models, is 
introduced and finally, by using the theory of piece-wise linear systems, the occurrence of synchronized motion 
in the clocks is analytically studied.

In summary, this work presents insightful results—i.e. novel experiments, an improved mathematical model, 
and a rigorous theoretical analysis—related to Huygens’ synchronization phenomenon.

Results
As a first step, an experimental study is presented. The outcome of the experiments has revealed that the monu-
mental pendulum clocks introduced here exhibit in-phase synchronized motion. This result seems to be contrary 
to Huygens observations who, to the best of our knowledge, only observed anti-phase synchronization in his 
setup of pendulum clocks, although very likely he was aware of the possibility of observing in-phase synchronized 
motion in his clocks. Furthermore, the experiments also show that when synchronized, the pendulum clocks 
become ‘slow’, i.e. their oscillation frequency decreases. Next, in order to obtain rigorous explanations for these 
results, a mathematical model, which takes into account the flexibility of the coupling structure, i.e. the flexibility 
of the wooden table on which the clocks are mounted, is derived by using the Finite Element method. Likewise, it 

Figure 1. Huygens’ setup (see1,25).
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is shown that under some mild assumptions, Huygens’ system of coupled clocks can be considered as a piece-wise 
linear system. Finally, analytic conditions for the existence of stable synchronized motion in the coupled clocks 
are provided.

Experimental results. The experimental platform used in this study is depicted in Fig. 2. It consists of two 
monumental clocks placed on the top of a wooden structure. The clocks are ad hoc designed and constructed, 
as identical as possible, by the clocks factory Relojes Centenario, located at Zacatlán, Puebla, México, who is the 
industrial partner in the research reported here. Each clock has a pendulum, which consists of a metallic mass 
attached to the lower end of a wooden rod. The weight of the pendulum mass is 5 [kg] and the length of the rod 
is 0.99 [m]. At the ‘heart’ of each clock there is an anchor escapement mechanism, which is driven by suspended 
weights. On the other hand, the structure on which the clocks are placed is made of pine wood. The mechanical 
and geometrical properties for the structure and for the clocks, are provided in Tables 1 and 2, respectively. At 
this point, it is worth mentioning that the design of the coupling structure is inspired by our previous theoretical 
work24. Additionally, it should be noted that the experimental setup depicted in Fig. 2 is slightly different than the 
one used by Huygens. In our case, the clocks are supported on the structure, whereas in Huygens’ experiment the 
clocks were hanging from the structure, see Fig. 1, but in both structures flexibility, i.e. elastic deformation of the 
material (wood), is present.

The experiments are described as follows. The pendula of the clocks are initialized from opposite positions. 
However, after a long transient behaviour of approximately 30 minutes, the pendula reached consonance such that 
the pendula oscillate in the same direction and at the same frequency and amplitude, i.e. the pendula of the clocks 

Figure 2. Experimental setup at Relojes Centenario. 

Property Horizontal beam Each vertical beam

Length lB =  0.84 [m] lS =  1 [m]

Width bh =  0.40 [m] bv =  0.04 [m]

Thickness hh =  0.16 [m] hv =  0.04 [m]

Cross-section area Ah =  bhhh =  0.064 [m2] Av =  bvhv =  0.0016 [m2]

Second moment of area = = . ⋅ −I b h 1 3653 10 [m ]h h h
1

12
3 4 4 = = . ⋅ −I b h 2 1333 10 [m ]v v v

1
12

3 7 4

Density ρh =  770 [kg/m3] ρv =  770 [kg/m3]

Young’s modulus Eh =  8.963 · 109 [N/m2] Ev =  8.963 · 109 [N/m2]

Other dimensions and parameters, see Fig. 7.

  Length for a single horizontal beam 
after discretization lb =  0.28 [m]

  Damping coefficient in the 
structure, see (29) ζ =  1[− ]

 Gravitational acceleration g =  9.81 [m/s2]

Table 1.  Geometrical and material (wood) properties for the coupling structure.
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are synchronized in-phase. Once the clocks are synchronized, they remain in this state as long as there is potential 
energy stored in the weights driving the escapement mechanism.

The obtained experimental results, for an experiment lasting 1 hour, are presented in Fig. 3. The complete 
time series are presented in Fig. 3(a,b), where the blue time series corresponds to the angular displacement of 
pendulum one, whereas the green time series denotes the angular displacement corresponding to pendulum two. 
Although from these figures the onset of synchronization is not clear, it becomes evident that ‘something’ hap-
pens in the interval t ∈  [300, 1100] [s]: the first pendulum clock (blue line) gains amplitude, whereas the second 
pendulum clock (green line) loses amplitude.

In order to have a a better insight into the experimental results, Fig. 3(c–e), which are snapshots correspond-
ing to Fig. 3(a,b), are presented. The first 5 seconds of the experiment are depicted in Fig. 3(c), from which the 
initial anti-phase motion of the pendulum clocks becomes evident. Then, Fig. 3(d) shows the time evolution 
of the angular displacements of the clocks in the interval t ∈  [775, 780] [s]. From this figure it is clear that the 
amplitude corresponding to the angular displacement of pendulum one (blue line) is larger than the amplitude of 
pendulum two (green line) around that interval of time. Finally, a snapshot to the last 5 seconds of the experiment, 
see Fig. 3(e), shows that the clocks are indeed synchronized in-phase.

In order to further illustrate the onset of synchronization, the projections of the dynamic behaviour of the 
clocks onto the (θ1, θ2)-plane, are presented in Fig. 4(a–c), where θ ∈i

1, i =  1, 2, denotes the angular displace-
ment of pendulum i. Note that Fig. 4(a–c) correspond to the time series presented in Fig. 3(c–e), respectively. 

Property Pendulum one Pendulum two

Mass of the pendulum bob m1 =  5 [kg] m2 =  5 [kg]

Mass of the metallic clock case mcase1 =  30 [kg] mcase2 =  30 [kg]

Length of pendulum l1 =  0.99 [m] l2 =  0.99 [m]

Damping at the revolute joint d1 =  0.065 [Nms/rad] d2 =  0.065 [Nms/rad]

Parameter values for the escapement mechanism, see (6)

  Amplitude of the applied input α =  0.1660 [Nm]

 Threshold angle θref =  0.0750 [rad]

 ‘Deviation’ angle ε =  0.010 [rad]

Table 2.  Parameter values for the ideal pendulum clocks used in the numerical analysis.
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Figure 3. Experimental results for an experiment lasting one hour. (a) Angular displacement of pendulum 
one. (b) Angular displacement of pendulum two. (c) The clocks are initialized close to anti-phase motion.  
(d) Pendulum one gains amplitude, whereas pendulum two loses amplitude and the phase difference decreases. 
(e) After a long transient behaviour, the pendula synchronize in-phase.
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From these projection plots the (close to) anti-phase startup, the transient behaviour, and the ‘steady’ in-phase 
synchronized motion, are clearly seen.

Finally, the synchronization error, which is defined as the difference between the angular displacement θ ∈1
1 

of pendulum one and the angular displacement θ ∈2
1 of pendulum two, i.e. θ θ= −e :sync 1 2, is presented in 

Fig. 4(d). Note that at the beginning the error is large, due to the fact that the pendula are initialized from opposite 
directions. However, after a long transient behaviour, the error ‘almost’ vanishes. At this point is worth to note 
that in the error time series depicted in Fig. 4(d), there are instants at which the error seems to decrease to zero 
but ‘suddenly’ grows and decreases again.

This is explained as follows. At the instants where the error seems to grow, an electrical motor, rewinding 
the suspended weights driving the escapement, is activated for a few seconds. Hence, the vibration of the motor 
induces a disturbance to the pendula and as a consequence, the synchronized motion is momentarily disturbed. 
However, once the ‘steady’ motion of the clocks is achieved (after half an hour), the influence of the vibrations of 
the motor on the clocks is negligible, and consequently the clocks are synchronized in-phase for the rest of the 
experiment. This is clearly seen in Fig. 4(d). One cannot expect the synchronization error to be zero, since there 
are unavoidable mismatches in the clocks. What we are observing in the experiment, and in general in any syn-
chronization experiment, is a so-called practical synchronization31,32.

On the other hand, it has been found that, when synchronized, the clocks become slow, i.e. the oscillation fre-
quency of the synchronized clocks is lower than the oscillation frequency of an uncoupled clock. This is depicted 
in Fig. 5. The right panel depicts the oscillation frequency for an uncoupled clock, which is 0.5003 [Hz], whereas 
the left panel shows the oscillation frequency for the coupled clocks, which is 0.4935 [Hz]. In other words, the 
coupled clocks will lose 47.34 [s] per hour or, equivalently, 1136.16 [s] per day!

This result coincides with our previous theoretical work22, where it has been shown that the stiffness of the 
coupling structure plays a key role in determining the oscillation frequency of the synchronized clocks, namely, 
for a coupling structure with ‘low’ stiffness, the clocks will oscillate at a frequency higher than the oscillation fre-
quency corresponding to an uncoupled clock and for a coupling structure with relatively large stiffness, the oscil-
lation frequency will be lower than the oscillation frequency of an uncoupled clock, just like in the experiment 
with monumental clocks presented here. Moreover, the change in the oscillation frequency may also be associated 
to the loss of energy in the clocks, via the damped coupling structure, see e.g.9,29.

As a final remark, it should be noted that for the sake of easy explanation, only one experiment has been 
reported here. However, we want to stress the fact that the experiment has been repeated several times (more than 
100) and in all the trials the results coincide with the results presented in Figs 3–5, i.e. the experiment is repro-
ducible. In particular, in such exhaustive experimental analysis (not reported here), different initial conditions 
have been used—including the case of starting the pendula of the clocks in anti-phase motion. It has been found 
that for all the considered initial conditions, the pendula always converge to the in-phase synchronized motion. 
Likewise, for the case where the clocks are running synchronized in-phase, if a small perturbation is applied to 
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Figure 4. Experimental results. (a–c) Projections of the dynamic behaviour of the clocks onto the (θ1, θ2)-
plane corresponding to the time series depicted in Fig. 3(c–e), respectively. (d) Synchronization error 

θ θ= −e : ( )sync 1 2 .
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one pendulum (for example giving a push to the pendulum in the opposite direction of motion), the in-phase 
synchronized motion is restored after the effect of the perturbation vanishes.

Intermezzo: The Dutch National Science Quiz. In December 2012, during the Dutch National Science Quiz, 
organized by the Netherlands Organisation for Scientific Research (NWO) and the Dutch public broadcaster 
VPRO, 15 science-related questions were posed to to the public, one of them read: Consider a pair of metro-
nomes, with slightly different frequencies, mounted on a platform elastically attached to a fixed support. The 
platform can move only on the horizontal axis. Suppose that after some time the metronomes synchronize, What 
is the synchronization frequency? There were 3 possible answers: a) The oscillation frequency of the synchronized 
metronomes is lower than the average of frequencies corresponding to each uncoupled metronome. b) The oscil-
lation frequency is the average of the oscillation frequencies of each uncoupled metronome. c) The oscillation 
frequency of the synchronized metronomes is higher than the average of frequencies corresponding to each 
uncoupled metronome. For the answer, we prepared an experiment using the Nijmeijer’s setup, see Fig. 6(a). The 
experiment, which was broadcasted to the Dutch audience, revealed that the answer is A). The answer is rather 
tricky as the correct answer depends on the stiffness coefficient of the spring of the platform (as well as vari-
ous other mechanical characteristics of the platform and metronomes). This fact has been rigorously proved in  
ref. 22, where it has been shown that the oscillation frequency, existence, and stability of the in-phase solution—
the solution where the metronomes oscillate in consonance at the same frequency, and amplitude and zero phase 
difference—are strongly determined by the spring stiffness of the platform, as depicted in Fig. 6(b), from which 
it is clear that depending on the value of the stiffness coefficient k, the oscillation frequency of the synchronous 
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Figure 5. Oscillation frequency. (a) Coupled and synchronized clocks. (b) Uncoupled clock.

Figure 6. (a) Nijmeijer’s setup, see e.g.11. (b) Oscillation frequency of two coupled metronomes as a function of 
the stiffness.
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solution is above or below the oscillation frequency of the uncoupled metronomes (horizontal dotted line). In the 
interval where the oscillation frequency remains constant, independently of the value of k, the in-phase solution 
becomes unstable and instead, the metronomes synchronize in anti-phase. Clearly, it is almost impossible to find 
the correct answer to the aforementioned quiz at short notice and without a careful reasoning. Note, however, 
that the results obtained with the Nijmeijer’s setup (metronomes) coincide with the results presented in this 
manuscript (monumental clocks), i.e. in both cases the oscillators, either metronomes or pendulum clocks, show 
in-phase synchronized motion and become slow.

Mathematical model and simulation results. In order to explain the experimental results presented in 
the previous section, a mathematical model describing the dynamic behaviour of the experimental setup of Fig. 2 
is obtained.

First, the wooden coupling structure is modelled by using the Finite Element (FE) method33. In this way, the 
flexibility of the structure (bending and elongation) is taken into account24. The FE formalism requires to divide 
the structure into finite pieces, i.e. to discretize the spatial variable, with the final aim of getting a finite set of ordi-
nary differential equations (ODEs). Figure 7 shows the resulting discretized structure, which consists of 5 beam 
elements (white bars, 2 vertical and 3 horizontal) interconnected through 4 nodes (gray circles). Each element is 
modelled using Euler beams. The vertical elements have length lS, whereas the horizontal elements have length 
lb. At each node, there are two degrees of freedom namely, translational and vertical motions. Consequently, the 
model describing the dynamical behaviour of the structure will consist of 8 ODEs.

As a second step, each clock is modelled as a driven and damped pendulum. In particular, it is assumed that 
each pendulum consists of a point mass of mass mi attached to the lower end of a massless rod of length li, for 
i =  1, 2. A further assumption is related to the attachment of the pendula to the structure. As is evident from 
Fig. 7, it is assumed, without loss of generality, that the pendula are directly attached to the structure by means of a 
revolute joint with viscous and linear damping. The damping coefficient is denoted by di [Nms/rad]. Likewise, the 
metallic case of each clock has been modelled as a point mass added to the node at which the clock is connected. 
Finally, the escapement mechanism in each clock is replaced by a suitable ‘escapement’ input ui, i =  1, 2, to be 
designed latter.

The aforementioned modelling process yields to the following (idealized) equations of motion:

= − − +̈Mq Kq Bq f , (1)

θ θ θ θ θ= − − − − + =̈ ̈ ̈m l m l x m l y m l g d u icos sin sin , 1, 2, (2)i i i i i ci i i i ci i i i i i i i

where g [m/s2] is the gravitational acceleration and q =  [x1 y1 xc1 yc1 xc2 yc2 x2 y2]T is the state vector. The state varia-
bles x1, x2 and y1, y2 denote the translational and vertical displacements, at node 1 and 4, respectively. Likewise, the 
state variables xc1, xc2 and yc1, yc2 describe the translational and vertical displacements of the nodes 2 and 3, respec-
tively, at which the pendula are attached, see Fig. 7. On the other hand, M, K, ∈ ×B 8 8 are the lumped mass, 
stiffness, and damping matrices, respectively. These matrices can easily be derived by following standard FE the-
ory for beam elements, see e.g.33. The vector ∈ ×f 8 1 contains the external forces exerted by the pendula on the 
connecting nodes (node 2 and 3 in Fig. 7) and is given by

= − − − −f H V H V[0 0 0 0] , (3)T
1 1 2 2

where

Figure 7. (a) Schematic drawing of the experimental setup depicted on Fig. 2. (b) Idealized schematic model. 
The structure has been divided into 5 pieces (white bars, 2 vertical and 3 horizontal) interconnected via 4 nodes 
(gray circles). Each clock has been modelled as a driven and damped pendulum.
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The remaining task is to model the escapement mechanism for the clocks. It is worth noting, however, that a 
proper model for the escapement is hard to obtain cf.34,35. This is the reason why some authors have modelled the 
escapement by using continuous10,16,22 and discontinuous21,24,29 nonlinear functions. These approximations seem 
to be sufficient to capture the essential behaviour of an escapement.

For the present case, the escapement mechanism of clock i, is modelled by the piece-wise linear function

α θ ε θ θ ε θ

α θ ε θ θ ε θ=










− ≤ ≤ + >

− − − ≤ ≤ − + <



u
if , and 0,

if , and 0,
0 otherwise, (6)

i

ref i ref i

ref i ref i

where θ ∈i
1, i =  1, 2, is the rotation angle of pendulum i, and α, θref, ε ∈ + are design parameters.

The design of the scalar input ui, i =  1, 2, is very intuitive: each time the pendulum reaches a threshold angle, 
which is determined by θref and ε, a step force of magnitude α is applied to the pendulum, either on the positive or 
negative direction, depending on the sign of the angular position and angular velocity. This behaviour coincides 
with the real operation of an anchor escapement in a clock: the anchor applies a small step force to the tooth of 
the escapement wheel when the angular displacement of the clock reaches a threshold angle, producing the char-
acteristic ‘tic’ and ‘tac’ sounds. There are also instants at which the anchor escapement is not in contact with the 
escapement wheel. The interested reader is referred to24, where the operation of the proposed escapement (6) is 
illustrated.

By defining the state vector θ θ θ θ=


 x q q: [ ]T1 2 1 2 , system (1)-(2) can be written in first order form

= + =




− −






+











+












− − − −�
� �������������������� �������������������� � ������ ������

x f x g x u
O I

M x K M x B
x

M x F x M x F u( ) ( )
( ) ( )

0
( ) ( )

0
( ) ,

(7)f x

input

g x

1 1 1

( )

1

( )

where O represents a matrix of zeros, 0 a vector of zeros and I the identity matrix, all of appropriate dimensions. 
M x( ), K , B are the extended mass, stiffness, and damping matrices, respectively, F is a nonlinear vector, Finput is the 
input vector, and u =  [u1 u2]T. These matrices and vectors are provided in Section Methods, see Eqs (25–29).

Note that the derived model contains the two essential components depicted on the right side of Fig. 1: a 
model for the coupling structure, which incorporates the flexibility properties of the structure, and the corre-
sponding model for the clocks—including the escapement mechanism. Moreover, these two models are suitably 
coupled such that the influence of the clocks on the structure is contained in the term f, see Eq. (1), whereas the 
influence of the structure on the clocks is denoted by the first two terms on the right-hand side of Eq. (2).

Furthermore, at this point, the reader should be convinced that the resulting model (7) does not contain ‘arti-
ficial’ terms, since it has been derived following well established physical/mechanical laws. In other words, the 
model presented here seems to be the appropriate model for the experimental setup shown in Fig. 2.

A numerical analysis has been conducted with the final aim of reproducing the experimental results discussed 
before and, in this way, to validate our model. Consequently, system (7) with inputs (6) has been numerically 
integrated. The parameter values have been obtained from the experimental setup and are summarized in Table 1 
and in Table 2, in Section Methods. Note that the pendula have been assumed to be identical. Additional details 
regarding the simulations are also provided in the aforementioned section.

Figure 8 shows the obtained simulation results. Similar to the experiments, the pendula are initially released 
from opposite directions. However, after approximately 25 minutes, the clocks converge to in-phase synchronized 
motion. This is clearly seen in Fig. 8(a), where the synchronization error θ θ= −e :sync 1 2 is depicted. Note that the 
synchronization error vanishes completely, whereas in the experiment, see Fig. 4(d), the synchronization error 
remains within a region around zero, i.e. in the experiments the error remains small but never converges to zero. 
This result, however, is obvious because in the experiment, there are unavoidable mismatches between the clocks, 
whereas for the computer simulations the clocks have been assumed to be identical.

The simulation results also reveal that the oscillation frequency of the coupled and synchronized pendula is 
0.4974 [Hz], whereas the oscillation frequency of an uncoupled pendula is 0.4997 [Hz], as depicted in Fig. 8(b,c). 
Hence, just like in the experiments, the pendula become slower.

In conclusion, by comparing the experimental results presented in Fig. 3 and the obtained numerical results 
depicted in Fig. 4, it is evident that the derived model (7) is able to capture the dynamical behaviour of the two 
coupled monumental clocks presented in Fig. 2.

Analytic results. So far, the onset of in-phase synchronous motion in a pair of pendulum clocks has been 
demonstrated by means of experiments and computer simulations. The next step is to conduct an analytic study 
in order to determine when and under which conditions, the clocks will show asymptotically stable synchronized 
motion.
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The analysis starts by assuming ‘small’ oscillations in the pendula, i.e. by considering that cos θi ≈  1 and 
sin θi ≈  θi. Note that this is indeed a mild assumption, since by a suitable adjustment/design of the escapement 
mechanism, it is possible to keep the amplitude of the oscillations in the pendulum of the clock within a small 
value.

If the assumption of small oscillations holds, then the dynamic behaviour of system (7) can be analyzed by 
linearizing the system around the origin. After linearization, system (7) with inputs (6) takes the form

θ ε θ θ ε θ

θ ε θ θ ε θ=










+ − ≤ ≤ + > =

+ − − ≤ ≤ − + < =



x
Ax B i

Ax B i
Ax

if and 0, for 1,2,

if and 0, for 1,2,
otherwise, (8)

ref i ref i

ref i ref i

1

3

where = |∂
∂ =A f x( )

x x 0
, B1 =  αg(0) and B3 =  − αg(0), with f and g as defined in (7) and α as given in (6).

System (8) is a piece-wise linear (PWL) system, with state dependent switching rule (remember that θi is 
indeed a state variable of the state vector x defined in (7)). Note that the PWL system (8) has 8 switching surfaces, 
i.e. hyperplanes at which the trajectory ‘jumps’ from one subsystem to another. However, when the pendula are 
synchronized, i.e. θ1 =  θ2 and θ θ= 

1 2, the number of switching surfaces reduces to 4. These surfaces are given by

= | − = > = | + = < =+
 S x Cx a Cx S x Cx a Cx i j{ 0 and 0}, { 0 and 0,}, for , 1, 2, (9)j j j j2

where a1 =  θref −  ε, a2 =  θref +  ε, and the row vectors C =  [00 1 0 01] and =C [0 0 1 0]1 0 , where ∈ ×00
1 8 and 

∈ ×01
1 10 are row vectors of zeroes.

Under these considerations, it is possible to obtain sufficient and necessary conditions for the existence of 
an isolated synchronized periodic solution, i.e. a ‘synchronous limit cycle’ in the PWL system (8). The following 
proposition, which can be easily proved by following the results presented in36,37, provides such conditions.

Proposition 1 Consider the PWL system (8). Assume that there exists an isolated periodic solution, i.e. a limit 
cycle with 4 switches per cycle, as defined in (9), such that a trajectory starting from the switching surface S1 hits the 
switching surfaces S2 at time t1. Then, the trajectory moves forward from S2 to S3 in t2 seconds, from S3 to S4 in t3 sec-
onds, and finally, from S4 back to S1 in t4 seconds. Hence, the period of the limit cycle solution is 
= + + +T t t t t: 1 2 3 4. Define

η= + =⁎g Cx i: , 1, 2, 3, 4, (10)i i i

= =
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Figure 8. Simulation results for two identical pendulum clocks. (a) Synchronization error θ θ= −e : ( )sync 1 2 . 
(b) Oscillation frequency corresponding to the coupled and synchronized pendula. (c) Oscillation frequency for 
an uncoupled pendulum.
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where η1 =  − a2, η2 =  a1, η3 =  a2, η4 =  − a1, with a1 and a2 as given in (9), and ⁎xi  are the values of the limit cycle 
solution at the switching surfaces (9), and are given by

= − − + −−⁎x I E E E E E E E E E z E I z( ) [( ) ( ) ], (12)1 1 4 3 2
1

1 4 3 1 4 3 1 1

= − − + −−⁎x I E E E E E E E E E E E z E E E z( ) [( ) ( ) ], (13)2 2 1 4 3
1

2 1 4 3 2 1 4 3 2 1 2 1

= − − + −−⁎x I E E E E E E E E E z E I z( ) [( ) ( ) ], (14)3 3 2 1 4
1

3 2 1 3 2 1 3 3

= − − + −−⁎x I E E E E E E E E E E E z E E E z( ) [( ) ( ) ], (15)4 4 3 2 1
1

4 3 2 1 4 3 2 1 4 3 4 3

with =E ei
Ati for i =  1, 2, 3, 4, zr =  A−1 Br, for r =  1, 3.

Then the following conditions hold:

= =g t t t t i( , , , ) 0, 1, 2, 3, 4, (16)i 1 2 3 4

> =g t t t t j( , , , ) 0, 1, 4, (17)j 1 2 3 4

< =g t t t t k( , , , ) 0, 2, 3, (18)k 1 2 3 4

and the periodic solution is governed by system = +x Ax B1 in the interval [0, t1), by system =x Ax in the interval 
[t1, t2), by system = +x Ax B3 in the interval [t2, t3), and again by system =x Ax in the interval [t3, t4).

The limit cycle described in Proposition 1 is illustrated in Fig. 9. The trajectory starts from the switching sur-
face S1 at t =  0, i.e. ∈x S(0) 1. Then, system = +x Ax B1 brings the trajectory to the switching surface S2 at time 
t1 by means of the mapping ϕ1(·). Thereafter, the trajectory is conducted by system =x Ax with initial condition 
∈⁎x S1 2 until the switching surface S3 is hit at t2. Next, the trajectory evolves according to = +x Ax B3, i.e. by 

means of the mapping ϕ3(·) the trajectory is driven to the switching surface S4 at time t3. Finally, the trajectory 
returns to the ‘departing’ switching surface S1 at time t4 via the mapping ϕ4, which is associated to system =x Ax. 
Since the operation of the escapement is symmetric, i.e. the ‘tic’ and ‘tac’ sounds are produced equidistantly in a 
clock, the times at which the switching surfaces are reached are also symmetric such that t3 =  t1 and t4 =  t2.

From a physical point of view, the limit cycle of Fig. 9 is explained as follows. Initially, the escapement wheel of 
the clock is in contact with the anchor escapement mechanism and remains in this situation in the interval (t0, t1). 

Figure 9. Limit cycle in the PWL system (8). 
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In this interval, the clock produces the characteristic ‘tic’ sound. Then, the escapement wheel is released from the 
anchor escapement and the pendulum of the clock oscillates freely, i.e. there is a ‘silence’ period in the interval 
(t1, t2) until the escapement wheel is again engaged at time t2. The anchor escapement remains in contact with 
the escapement wheel in the interval (t2, t3), producing the ‘tac’ sound. Once the escapement wheel is released at 
t3, the pendulum oscillates back to the starting point, i.e. there is again a silence period in the interval (t3, t4) and 
finally, the escapement wheel is engaged at t4, i.e. the cycle starts again.

Next, the asymptotic stability of the limit cycle described above is investigated by using the following proposi-
tion, which is based on a general result derived and proved in refs 36,37.

Proposition 2 Consider the PLS system (8) and assume that the system has a limit cycle as described in 
Proposition 1. Define

=




−






=W I v C
Cv

e i, 1, 2, 3, 4,
(19)

i
i

i

Ati

where ∈ ×I 20 20 is the identity matrix, ∈ ×C 1 20 is a row vector as defined in (9), matrix ∈ ×A 20 20 as given in 
(8), = +⁎v Ax B1 1 1, =

⁎v Ax2 2 , = +⁎v Ax B3 3 3 and = ⁎v Ax4 4 , with ⁎xi , i =  1, 2, 3, 4, as defined in (12–15). Moreover, 
assume that the limit cycle is transverse to the switching surfaces, i.e. Cvi ≠  0. Then, if all the eigenvalues of the matrix

=W W W W W (20)4 3 2 1

are contained inside the unit circle, then the limit cycle described in Proposition 1 is locally stable and unstable 
otherwise.

Based on the aforementioned propositions, the following result is true.

Theorem 1 Consider the PWL system (8). If it is possible to find the smallest times t1, t2, t3 =  t1 and t4 =  t2, satisfy-
ing conditions (16–18) in Proposition 1 and, simultaneously, satisfying

= = =

⁎ ⁎C x C x for i0, 0, 1, 2, 3, 4, (21)sync i sync i

where Csync =  [00 1 − 1 01], = −C [0 0 1 1]sync 1 0  and with 00 and 01 as defined in (9), then the following holds

θ θ θ θ= = ∀ ≥ t t t t t( ) ( ), ( ) ( ), 0, (22)1 2 1 2

i.e. the in-phase synchronous solution of the state variables θi, θ i, i =  1, 2, which respectively describe the angular dis-
placement and angular velocity of the coupled pendula, exists. Furthermore, the oscillation frequency of this synchro-
nous solution is

= =
+ + +

.−f
T t t t t
1 1

(23)in phase
1 2 3 4

Additionally, if for the obtained times ti, i =  1, 2, 3, 4 the eigenvalues of (20) are contained inside the unit circle, 
then the in-phase solution (22) is locally asymptotically stable.

At this point, it should be noted that the values of t1, t2 and t3 =  t1, t4 =  t2 satisfying the conditions in 
Proposition (1) and the conditions in Theorem (1), cannot be obtained in closed form, in part because of the fact 
that the number of variables is smaller than the number of equations. The best we can do is to numerically solve 
(16) subject to conditions (17), (18), and (21).

Remark 1 The analytic results have been derived for the PWL system (8). However, under the assumption of 
‘small’ oscillations in the pendula, the obtained results hold for the original system (7). Hence, if the conditions 
of Theorem 1 are fulfilled, we may expect that the monumental clocks will synchronize in-phase with oscillation 
frequency approximately equal to (23). Moreover, such synchronized motion is expected to be locally asymptot-
ically stable.

Finally, the obtained analytic results are used in order to investigate the onset of synchronization in the exper-
imental setup of Fig. 2 with model (7). The smallest values for ti satisfying Theorem 1 are obtained by solving (16) 
subjected to conditions (17), (18), and (21) and considering the parameter values given in Tables 1 and 2. This 
yields

= . = . = = . = = . .t s t s t t s t t s0 1020 [ ], 0 9553 [ ], 0 1020 [ ], 0 9553 [ ] (24)1 2 3 1 4 2

On the other hand, for the obtained times (24), the eigenvalues of (20) are all contained inside the unit circle. 
Hence, from Theorem 1, it follows that the in-phase synchronous motion in the coupled monumental clocks of 
Fig. 2 is expected to be locally asymptotically stable and the oscillation frequency of the synchronous solution is 
expected to be fin–phase =  1/T =  1/(t1 +  t2 +  t3 +  t4) =  1/2.1146 =  0.4729 [Hz]. These results are in good agreement 
with the experimental results, see Fig. 5 and with the numerical results, see Fig. 8. In fact, the errors between the 
obtained experimental and numerical results and the predicted analytic results remain lower than 5%.

Discussion
The results presented in this manuscript provide new insight in understanding why two inert systems—monu-
mental pendulum clocks— may feel sympathy for each other.
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Specifically, we have demonstrated that two monumental pendulum clocks, placed on a wooden support, 
exhibit in-phase synchronized motion. Although the in-phase motion of pendulum-like oscillators and small 
pendulum clocks has already been reported, see e.g.12,16, this is the first time that the phenomenon is observed 
in monumental clocks. Additionally, we have discovered that the onset of synchronization has a cost namely, the 
oscillation frequency of the pendula decreases such that the clocks lose several seconds per hour. This result is 
different from Huygens’ experiment, where the clocks were oscillating in anti-phase. Moreover, in22 it has been 
demonstrated that in Huygens’ experiment, the oscillation frequency of the coupled and synchronized clocks is 
not affected.

At this point, the reader may be wondering why Huygens was observing anti-phase synchronization while in 
our experiment we have observed in-phase synchronization. In fact, there is an easy explanation: the mechanical 
properties of the structure used here are different than the mechanical properties of the setup used by Huygens. 
Moreover, the parameters of the pendulum clocks are also different from the ones used by Huygens. The reader 
should realize that there is not a unique key parameter but rather a set of key parameters, which determine the 
type of synchronization, e.g. damping and stiffness in the coupling structure, and mass, length, and damping 
in the pendula. The combination of all these parameters will eventually lead to a specific type of synchronous 
motion, to co-existence of synchronous solutions, or even to other kind of limit behaviour, see e.g.24. For the sake 
of illustration, we have included Fig. 10, which clearly shows that the damping in the coupling structure (related 
to parameter β, see Eq. (30) below, in Section ‘Methods’) plays a key role in the type of synchronization in the 
pendulum clocks. From this figure it is evident that for small damping (β <  0.55) only in-phase synchroniza-
tion exists (yellow region). For large damping (β ≥  1.195) anti-phase synchronization is the dominant behaviour 
(cyan region) and for ‘intermediate’ damping in the coupling structure (0.55 ≤  β ≤  0.95) in-phase and anti-phase 
synchronization co-exist, depending on the initial conditions. Also note that for a small interval of the damping 
parameter (0.95 ≤  β ≤  1.195) there exists a region where the pendula are synchronized in frequency but with 
a constant the phase difference, which is neither 0 nor π (blue region). Clearly, the results presented in Fig. 10 
suggest that in the case of Huygens’ setup of coupled clocks the damping was ‘large’ since Huygens only observed 
anti-phase synchronization, whereas in the experimental platform presented here the damping is ‘small’ and 
consequently we only have observed in-phase synchronization cf.9,12.

Although to the best of our knowledge we have witnessed something that Huygens did not see—two pendu-
lum clocks showing in-phase synchronized motion but becoming slow/inaccurate—it should be emphasized that 
this is not the end of the history. We believe that there are more limit behaviours ‘hidden’ in Huygens’ system of 
coupled clocks, see e.g.24. Then, the challenge—among others—is to find those limit behaviours not only at the 
level of computer simulations but also at the level of experiments and to rigorously prove their existence and 
stability. Moreover, although the mathematical model presented here is indeed an improved model regarding 
current models, the ‘true’ Huygens’ model is still ‘a mystery to unveil’. Consequently, we encourage Huygens’ 
followers to continue in these directions.

Finally, it is worth mentioning that the experimental setup depicted in Fig. 2 has been placed, for indefinite 
time, in the clocks museum “Alberto Olvera”. Everyday, dozens of visitors can admire the sympathetic motion of 
the clocks. It seems that for them, it is truly amazing—perhaps miraculous as some of them have commented—to 
observe a pair of inert systems oscillating in perfect consonance. A short text next to the sympathetic clocks reads 
‘… the pendulum clocks show sympathetic motion due to the imperceptible motion of the wooden support on which 
they are placed…this sympathy, however, prevents the clocks of being accurate…’
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Figure 10. Limit behaviour of system (7) with input (6) as a function of the initial condition θ2(0) of 
pendulum two and the damping in the coupling structure, determined by β, see Eq. (30). The colors 
indicate the type of behaviour the system exhibits after 25000 [s]. Yellow: in-phase synchronization, cyan: anti-
phase synchronization, brown: the initial condition of pendulum two is not enough to activate its escapement 
mechanism and consequently, pendulum two comes to stand still, blue: the pendula exhibit frequency 
synchronization, but the phase difference is neither 0 nor π. For all cases, the initial condition of pendulum one 
has been fixed to θ1(0) =  0.15 [rad].
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Methods
The dimensions and mechanical properties of the coupling structure, see Figs 2 and 7, are summarized in Table 1.

On the other hand, Table 2 summarizes the main characteristics of the pendulum clocks and the parameter 
values for the nonlinear function (6), which mimics the escapement mechanism of the clocks.

Note that Tables 1 and 2 summarize the parameter values for the ideal case, i.e. for the case of identical pen-
dulum clocks and identical mechanical properties in the coupling structure. However, in the real experiment, 
the clocks are not identical although they have constructed as identical as possible. Here, we have assumed iden-
tical systems for the sake of easy analysis, see Subsection ‘Analytic results’. In fact, the parameter values pre-
sented in Table 2 correspond to pendulum one. The real parameter values of pendulum two are m2 =  5.12 [kg], 
l2 =  0.9940 [m] and mcase2 =  30.3 [kg], just to mention a few. If the actual differences between the clocks are taken 
into account, then it is not trivial to perform an analytic study showing the robustness of the synchronized motion 
against mismatches between the pendulum clocks. Such analysis is still an open question, whose answer is beyond 
the scope of this manuscript. Nevertheless, we want to stress the fact that the ideal case considered here provide 
important insight in understanding the onset of in-phase synchronous solutions in the real system of coupled 
clocks depicted in Fig. 2.

In the experiments, the angular displacement of the pendula has been measured by means of magnetic sensors 
HCM1501, from Honeywell38. A magnet has been attached to the pendulum of each clock and the corresponding 
sensor has been placed in the case of the clock. Additionally, a data acquisition card from Texas Instruments, has 
been used for recording the data to a computer. For the simulation results, see Fig. 8, the derived model (7) with 
input (6) was implemented in Simulink and numerically integrated by using the variable time-step solver ode23t, 
available in MatLab©, with relative and absolute tolerances equal to 0.001 and maximum step size equal to 0.001. 
The initial conditions are θ1(0) =  0.1 [rad], θ2(0) =  − 0.096 [rad], and the remaining initial conditions are set to 
zero.

The matrices corresponding to model (7) are given by
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3.

On the other hand, the nonlinear vector ∈ ×F x( ) 10 1 in (7) verifies

θ θ θ θ= Ψ − Ξ − Ψ − Ξ − − Ψ − Ψ .   F x m g m g g g( ) [0 0 0 0 ] (28)
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Finally, the damping matrix is given by24
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where ζ is the dimensionless damping coefficient, Φ ∈ ×8 8 contains the eigenmodes ϕi, which are obtained by 
solving the eigenvalue problem ω ϕ− =K M[ ] 0i i

2 , for i =  1, … , 8, with M and K as given in (1). Moreover, the 
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eigenmodes ϕi have been normalized such that Φ TMΦ  =  I, where ∈ ×I 8 8 is the identity matrix. Likewise the 
eigenmodes satisfy Φ TKΦ  =  Ω2, where Ω ∈ ×8 8 is a diagonal matrix containing the eigenfrequencies ωi of the 
coupling structure.

In order to generate Fig. 10, we have assumed that the damping matrix B associated to the structure is propor-
tional to the stiffness matrix, i.e. we have considered that

β=B K, (30)

where β ∈ + and K as defined in (1). Again, the derived model (7) with input (6) and parameter values as sum-
marized in Tables 2 and 1 was implemented in Simulink and numerically integrated by using the variable 
time-step solver ode23t, available in MatLab©, with relative and absolute tolerances equal to 1e −  5 and automatic 
maximum and minimum step size. The initial conditions are θ1(0) =  0.15 [rad], θ2(0) is varied in the interval 
[− 0.15, 0.15] [rad], in steps of 0.25 [rad] and the remaining initial conditions are set to zero. The proportional 
damping parameter β is varied in the interval [0.02, 1.3] in steps of 0.02.

Epilogue
Nowadays, there exists a large number of studies addressing the phenomenon of Huygen’s synchronization. This 
may be motivated by the fact that Huygens’ system of coupled clocks has a certain degree of similarity with other 
systems.

Consider for instance the case of two driven unbalanced rotors (a familiar example of this kind of devices is a 
washing machine) mounted on an elastic support, i.e. interacting via Huygens’ coupling. It has been found that, 
under certain conditions, the rotors may synchronize either in-phase or in anti-phase16. Note that the onset of 
anti-phase synchronization in this example is highly desirable, since this will reduce or even eliminate the vibra-
tions of the common support during the operation of the rotors. However, the onset of in-phase synchronization 
is not desired at all, since this will induce resonance and high amplitude vibrations of the support ultimately 
resulting in harmful and undesirable effects.

Something similar happens in a living organism. For instance, inside the human body, there are several bio-
logical rhythms: respiration, heartbeat, and blood perfusion just to mention a few of them. It has been found 
that when some of these rhythms synchronize with each other the energy consumption is minimal39,40. Hence, 
in this case the onset of synchronization is beneficial. On the other hand, synchronization can also be dangerous 
or detrimental. It is widely accepted, that the process of seizure generation is closely associated with abnormal 
synchronization of neurons, see e.g.41.

Note that in both cases, either unbalanced rotors or biological rhythms in the human body, the synchroniza-
tion phenomenon occurs naturally. Therefore, it is necessary to determine under which conditions (maybe related 
to the coupling structure) the synchronization phenomenon (in particular, in-phase or anti-phase) may occur. 
This suggests that perhaps the (theoretical and/or experimental) achievements in one area, say mechanics, can 
help to better understand the natural synchronization phenomena occurring in for instance biological rhythms, 
where a rigorous theoretical study is most of the time unfeasible because of the obvious lack of good mathematical 
models.

Moreover, Huygens’ synchronization also finds interesting applications. For example, in cancellation of vibra-
tions42 and in determining the behaviour of coupled transmission lines, cf.43. Additionally, it should be noted that 
there is a connection between the synchronization phenomena like the one observed by Huygens and a phenom-
enon which is referred to as indirect synchronization44–48.

Hence, it should be clear that Huygens’ setup of coupled pendulum clocks is an exciting and challenging non-
linear dynamical system, whose dynamical behaviour is far from being completely understood. Further studies 
of this system will lead to unveiling more details about the complex yet intriguing synchronization phenomenon.

Last but not least, we want to comment the following. Recently, the sympathetic motion of pendulum clocks 
has been the topic of several newspapers and magazines. The reason: a research paper, in which the authors claim 
that the synchronization between clocks (Huygens’ synchronization) takes place due to sound pulses (sound 
solitons)30. It is our strong believe that when reading our paper, and the results presented by other ‘Huygens’ 
followers’, see e.g.9,12,20,21,23,29, the reader will be convinced that the ‘secret’ behind Huygens’ synchronization is 
enclosed into the dynamics of the coupling structure on which the clocks are hanging. In other words, the reader 
should realize that if the clocks are suitably coupled, they will synchronize even if the sound pulses are absent.
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